Skip to main content
Log in

Amorphous titanium dioxide: a recyclable dye remover for water treatment

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Decolorization of dye solutions, crystal violet and congo red, were investigated using the synthesized amorphous titanium dioxide and compared with commercial titanium dioxides: Degussa P25 and anatase. Results showed that amorphous TiO2 had good adsorptivity that could decolorize the dye polluted water effectively mainly by adsorption. Decolorization by photocatalytic property was also detected but was very low. Concentrations of dye solutions used in this work were about ten times higher than normally used in other reports. After use, the particle surface was completely covered with dye molecules but this could be regenerated and the cleaned particles could be reused several times. Hydrogen peroxide and ultraviolet irradiation were used in the regeneration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zainal Z, Hui LK, Hussein MZ, Taufiq-Yap YH, Abdullah AH, Ramli I (2005) J Hazard Mater 125:113

    Article  CAS  PubMed  Google Scholar 

  2. Salem IA (2000) Appl Catal B 28:153 and references cited therein

    Article  CAS  Google Scholar 

  3. Sauer T, Cesconeto Neto G, José HJ, Moreira RFPM (2002) J Photochem Photobiol A 149:147

    Article  CAS  Google Scholar 

  4. Senthilkumaar S, Kalaamani P, Subburaam CV (2006) J Hazard Mater B 136:800

    Article  CAS  Google Scholar 

  5. Purkait MK, Maiti A, DasGupta S, De S (2007) J Hazard Mater 145:287

    Article  CAS  PubMed  Google Scholar 

  6. Namasivayam C, Kavitha D (2002) Dyes Pigm 54:47

    Article  CAS  Google Scholar 

  7. Wang L, Wang A (2008) J Hazard Mater 160:173

    Article  CAS  PubMed  Google Scholar 

  8. Singh V, Sharma AK, Tripathi DN, Sanghi R (2009) J Hazard Mater 161:955

    Article  CAS  PubMed  Google Scholar 

  9. Khataee AR, Vatanpour V, Amani Ghadim AR (2009) J Hazard Mater 161:1225

    Article  CAS  PubMed  Google Scholar 

  10. Namasivayam C, Kanchana N (1992) Chemosphere 25:1691

    Article  CAS  Google Scholar 

  11. Deo N, Ali M (1993) Indian J Environ Prot 13:496

    Google Scholar 

  12. Namasivayam C, Arasi DJSE (1997) Chemosphere 34:401

    Article  CAS  Google Scholar 

  13. Dutta PK (1994) Indian J Environ Prot 14:443

    Google Scholar 

  14. Namasivayam C, Yamuna RTJ (1992) Chem Technol Biotechnol 53:153

    CAS  Google Scholar 

  15. Hoffman MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69

    Article  Google Scholar 

  16. Stylidi M, Kondarides DI, Verykios XE (2004) Appl Catal B 47:189

    Article  CAS  Google Scholar 

  17. Ding XZ, Liu XH (1997) Mater Sci Eng A 224:210

    Article  Google Scholar 

  18. Bakardjieva S, Šubrt J, Štengl V, Dianez MI, Sayagues MJ (2005) Appl Catal B 58:193

    Article  CAS  Google Scholar 

  19. Randorn C, Wongnawa S, Boonsin P (2004) ScienceAsia 30:149

    Article  Google Scholar 

  20. Kanna M, Wongnawa S, Sherdshoopongse P, Boonsin P (2005) Songklanakarin J Sci Technol 27:1017

    Google Scholar 

  21. Tanaka K, Campule MFV, Hisanaga T (1991) Chem Phys Lett 187:73

    Article  CAS  ADS  Google Scholar 

  22. Ohtani B, Ogawa Y, Nishimoto S (1997) J Phys Chem B 101:3746

    Article  CAS  Google Scholar 

  23. Jensen H, Joensen KD, Jorgensen J-E, Pedersen JS, Sogaard EG (2005) J Nanopart Res 6:519

    Article  Google Scholar 

  24. Zhang Z, Maggard PA (2007) J Photochem Photobiol A 186:8

    Article  CAS  Google Scholar 

  25. Baiju KV, Shukla S, Sandhya KS, James J, Warrier KGK (2007) J Phys Chem C 111:7612

    Article  CAS  Google Scholar 

  26. Clark RJH (1968) The chemistry of titanium and vanadium. Elsevier Publishing Co., Amsterdam

    Google Scholar 

  27. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2001) Appl Catal B 31:145

    Article  CAS  Google Scholar 

  28. Galindo C, Jacques P, Kalt A (2000) J Photochem Photobiol A 130:35

    Article  CAS  Google Scholar 

  29. Shu H-Y, Chang M-C (2005) J Hazard Mater 125:96

    Article  CAS  PubMed  Google Scholar 

  30. Shu H-Y, Chang M-C (2005) J Hazard Mater 125:244

    Article  CAS  PubMed  Google Scholar 

  31. Rosenfeldt EJ, Linden KG, Canonica S, von Gunten U (2006) Water Res 40:3695

    Article  CAS  PubMed  Google Scholar 

  32. Huang C-P, Huang Y-H (2009) Appl Catal A 357:135

    Article  CAS  Google Scholar 

  33. Moura FCC, Oliveira GC, Araujo MH, Ardisson JD, Macedo WAA, Lago RM (2006) Appl Catal A 307:195

    Article  CAS  Google Scholar 

  34. Han Y-F, Chen F, Ramesh K, Zhong Z, Widjaja E, Chen L (2007) Appl Catal B 76:227

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No.PHD/0126/2546 to M.K.); the Center for Innovation in Chemistry (PERCH-CIC), Commision on Higher Education, Ministry of Education; and the Graduate School of Prince of Songkla University (to both M.K. and S.B.). Sample of Degussa P25 used throughout this work was donated by Degussa AG, Frankfurt, Germany, through its agency in Bangkok, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumpun Wongnawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanna, M., Wongnawa, S., Buddee, S. et al. Amorphous titanium dioxide: a recyclable dye remover for water treatment. J Sol-Gel Sci Technol 53, 162–170 (2010). https://doi.org/10.1007/s10971-009-2072-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2072-5

Keywords

Navigation