Skip to main content
Log in

Characterization and preparation of nanocrystalline MgCuZn ferrite powders synthesized by sol–gel auto-combustion method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanocrystalline Mg–Cu–Zn ferrite powders were successfully synthesized through nitrate–citrate gel auto-combustion method. Characterization of the nitrate–citrate gel, as-burnt powder and calcined powders at different calcination conditions were investigated by using XRD, DTA/TG, IR spectra, EDX, VSM, SEM and TEM techniques. IR spectra and DTA/TGA studies revealed that the combustion process is an oxidation–reduction reaction in which the NO3 ion is oxidant and the carboxyl group is reductant. The results of XRD show that the decomposition of the gel indicated a gradual transition from an amorphous material to a crystalline phase. In addition, increasing the calcination temperature resulted in increasing the crystallite size of Mg–Cu–Zn ferrite powders. VSM measurement also indicated that the maximum saturation magnetization (64.1 emu/g) appears for sample calcined at 800 °C while there is not much further increase in M s at higher calcination temperature. The value of coercivity field (H c) presents a maximum value of 182.7 Oe at calcination temperature 700 °C. TEM micrograph of the sample calcined at 800 °C showed spherical nanocrystalline ferrite powders with mean size of 36 nm. The toroidal sample sintered at 900 °C for 4 h presents the initial permeability (μ i) of 405 at 1 MHz and electrical resistivity (ρ) of 1.02 × 108 Ω cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dyal A, Loos K, Noto M et al (2003) J Am Chem Soc 125:1684

    Article  PubMed  CAS  Google Scholar 

  2. Choi EJ, Ahn Y, Kim S et al (2003) J Magn Magn Mater 262:L198

    Article  ADS  CAS  Google Scholar 

  3. Sinha A, Nayar S, Murthy GVS et al (2003) J Mater Res 18:1309

    Article  ADS  CAS  Google Scholar 

  4. Caizer C, Stefaneson M (2002) J Phys D Appl Phys 35:3035

    Article  ADS  CAS  Google Scholar 

  5. Hrianca I, Caizer C, Schlett Z (2002) J Appl Phys 92:2125

    Article  ADS  CAS  Google Scholar 

  6. Liu C, Zou B, Rondinone AJ et al (2000) J Am Chem Soc 122:6263

    Article  CAS  Google Scholar 

  7. Shinkai M (2002) J Biosci Bioeng 94:606

    PubMed  CAS  Google Scholar 

  8. Lubbe AS, Alexiou C, Bergemann C (2001) J Surg Res 95:200

    Article  PubMed  CAS  Google Scholar 

  9. Tiefenauer LX, Tschirky A, Kuhne G et al (1996) Magn Reson Imaging 14:391

    Article  PubMed  CAS  Google Scholar 

  10. Skmoski R (2003) J Phys Condens Matter 15:R841

    Article  ADS  Google Scholar 

  11. Gibbs MRJ, Opin C (2003) Solid State Mater Sci 7:83

    Article  CAS  Google Scholar 

  12. Yue Z, Zhou J, Wang X et al (2001) Mater Sci Eng B86:64

    Article  CAS  Google Scholar 

  13. Qi X, Zhou J, Yue Z et al (2002) J Magn Magn Mater 251:316

    Article  ADS  CAS  Google Scholar 

  14. Yue Z, Zhou J, Wang X et al (2001) J Mater Sci Lett 20:1327

    Article  CAS  Google Scholar 

  15. Jiao X, Chen D, Hu Y (2002) Mater Res Bull 37:1583

    Article  CAS  Google Scholar 

  16. Hwang C, Tsai J, Huang T (2005) J Mater Chem Phys 110:1

    Google Scholar 

  17. Peng CH, Hwang C, Chen S (2004) J Mater Sci Eng 107:295

    Article  CAS  Google Scholar 

  18. Chen DH, He XR (2001) Mater Res Bull 36:1369

    Article  CAS  Google Scholar 

  19. Mouallem-bahout M, Bertrand S, Pena O (2005) J Solid State Chem 178:1080

    Article  ADS  CAS  Google Scholar 

  20. Verma A, Goel TC, Mendiratta RG et al (2000) J Magn Magn Mater 208:13

    Article  ADS  CAS  Google Scholar 

  21. Chen Q, Rondinone AJ, Chakoumakos BC et al (1999) J Magn Magn Mater 194:1

    Article  ADS  CAS  Google Scholar 

  22. Barati MR, Seyyed Ebrahimi SA, Badiei A (2008) Key Eng Mater 368–372:598

    Article  Google Scholar 

  23. Barati MR, Seyyed Ebrahimi SA, Badiei A (2008) Mod Phys B22:3153

    Google Scholar 

  24. Azadmanjiri J, Salehani HK, Barati MR et al (2007) J Mater Lett 61:84

    Article  CAS  Google Scholar 

  25. Deka S, Joy PA (2006) Mater Chem Phys 100:98

    Article  CAS  Google Scholar 

  26. Rezlescu N, Rezlescu E, Popa PD et al (1998) J Magn Magn Mater 182:199

    Article  ADS  CAS  Google Scholar 

  27. Huang Y, Tang Y, Wang J et al (2006) Mater Chem Phys 97:394

    Article  CAS  Google Scholar 

  28. Zhang HE, Zhang BF, Wang GF et al (2007) J Magn Magn Mater 312:126

    Article  ADS  CAS  Google Scholar 

  29. Costa ACFM, Tortella E, Morelli MR et al (2003) J Magn Magn Mater 256:174

    Article  ADS  CAS  Google Scholar 

  30. Globus A, Duplex P, Guyot M (1971) IEEE Trans Magn 7:617

    Article  ADS  CAS  Google Scholar 

  31. Perduijin DJ, Peloschek HP (1968) Proc Br Ceram Soc 10:263

    Google Scholar 

  32. Manjurul HM, Huq M, Hakim MA (2008) J Phys D Appl Phys 41:55007

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to express their thanks to Mr. Yourdkhani and Mr. Nikkhah-Moshaie for useful helps and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Barati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barati, M.R. Characterization and preparation of nanocrystalline MgCuZn ferrite powders synthesized by sol–gel auto-combustion method. J Sol-Gel Sci Technol 52, 171–178 (2009). https://doi.org/10.1007/s10971-009-2023-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2023-1

Keywords

Navigation