Skip to main content
Log in

In situ silica reinforcement of natural rubber by sol–gel process via rubber solution

  • Original paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The in situ silica filling of natural rubber (NR) was carried out via the sol–gel reaction using tetraethoxysilane. The effect of the in situ silica content on the curing, mechanical, dynamic mechanical and thermal properties of the composite vulcanizate materials was investigated in comparison to that with a commercial silica preparation. The Mooney viscosity of the in situ silica filled NR vulcanizates showed a lower value compared with that of the commercial filled ones. The mechanical properties of the in situ silica composite materials, i.e., the moduli and compression set, were improved compared with the commercial silica filler NR vulcanizates. The reinforcement effect of in situ silica did not accord with the Smallwood equation but in contrast was in good agreement with the Guth and Gold equation using a shape factor (f) which itself was in close agreement with estimates derived from independent TEM analysis. The pseudo-network structure of the in situ silica was low, which resulted in a lower storage modulus at 25 °C. By filling NR with in situ silica, the thermal properties of the composite vulcanized material were also improved, and well dispersed in situ silica particles within the NR matrix were also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kraus G (1965) Reinforcement of elastomers. Interscience Publishers, New York

    Google Scholar 

  2. Wolff S (1996) Rubber Chem Technol 69:325

    CAS  Google Scholar 

  3. Mammeri F, Bourhis LE, Rozesa L, Sanchez C (2005) J Mater Chem 15:3787

    Article  CAS  Google Scholar 

  4. Zou H, Wu S, Shen J (2008) Chem Rev 108:3893

    Article  PubMed  CAS  Google Scholar 

  5. Allegra G, Raosa G, Vacatello M (2008) Prog Polym Sci 33:683

    Article  CAS  Google Scholar 

  6. Kohjiya S, Murakami K, Iio S, Tanahashi T, Ikeda Y (2001) Rubber Chem Technol 74:16

    CAS  Google Scholar 

  7. Kohjiya S, Katoh A, Shimanuki J, Hasegawa T, Ikeda Y (2005) Polymer 46:4440

    Article  CAS  Google Scholar 

  8. Hench LL, Ulrich RD (1985) Science of ceramic chemical processing. John & Sons, New York

    Google Scholar 

  9. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, New York

    Google Scholar 

  10. Landry CJT, Coltrain BK, Brady BK (1992) Polymer 33:1495

    Google Scholar 

  11. Bandyopadhyay A, Bhowmick AK, Sarkar MD (2004) J Appl Polym Sci 93:2579

    Article  CAS  Google Scholar 

  12. Hashim AS, Kawabata N, Kohjiya S (1995) J Sol-Gel Sci Technol 5:211

    Article  CAS  Google Scholar 

  13. Sengupta R, Bandyopadhyay A, Sabharwal S, Chaki TK, Bhowmick AK (2005) Polymer 46:3343

    Article  CAS  Google Scholar 

  14. Bandyopadhyay A, Sarkar MD, Bhowmick AK (2005) J Mater Sci 40:53

    Article  ADS  CAS  Google Scholar 

  15. Bandyopadhyay A, Sarkar MD, Bhowmick AK (2006) J Master Sci 41:5981

    Article  ADS  CAS  Google Scholar 

  16. Ikeda Y, Tanaka A, Kohjiya S (1997) J Mater Chem 7:455

    Article  CAS  Google Scholar 

  17. Kohjiya S, Ikeda Y (2003) J Sol-Gel Sci Technol 26:495

    Article  CAS  Google Scholar 

  18. Ikeda Y, Poompradub S, Morita Y, Kohjiya S (2008) J Sol-Gel Sci Technol 45:299

    Article  CAS  Google Scholar 

  19. Yoshikai K, Ohsaki T, Furukawa M (2002) J Appl Polym Sci 85:2053

    Article  CAS  Google Scholar 

  20. Tangpasuthadol V, Intasiri A, Nuntivanich D, Niyompanich N, Kiatkamjornwong S (2008) J Appl Polym Sci 109:424

    Article  CAS  Google Scholar 

  21. Ikeda Y, Kameda Y (2004) J Sol-Gel Sci Technol 31:137

    Article  CAS  Google Scholar 

  22. Poompradub S, Kohjiya S, Ikeda Y (2005) Chem Lett 34:672

    Article  CAS  Google Scholar 

  23. Poompradub S, Chaichua B, Karnchanaamporn C, Boonsalee T, Parsassarakich P (2008) KGK-Kautsch Gummi Kunstst 408:152

    Google Scholar 

  24. Martinsa MA, Morenoa RMB, McMahanc CM, Brichtac JL, Goncalvesb PS, Mattosoa LHC (2008) Thermochim Acta 474:62

    Article  Google Scholar 

  25. Sae-oui P, Sirisinha C, Thepsuwan U, Hatthapanit K (2006) Eur Polym J 42:479

    Article  CAS  Google Scholar 

  26. Kohjiya S, Katoh A, Shimanuki J, Hasegawa T, Ikeda Y (2005) Polymer 46:4440

    Article  CAS  Google Scholar 

  27. Guth E (1945) J Appl Phys 16:20

    Article  ADS  CAS  Google Scholar 

  28. Wolff S, Donnet JB (1990) Rubber Chem Technol 63:32

    CAS  Google Scholar 

  29. Guth E, Gold O (1938) Phys Rev 53:322

    CAS  Google Scholar 

  30. Horowitz HH, Metzger G (1963) Anal Chem 35:1464

    Article  CAS  Google Scholar 

  31. Park SJ, Cho KS (2003) J Colloid Interface Sci 267:86

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding support from the 90th anniversary of Chulalongkorn University fund (Ratchadaphiseksomphot Endowment Fund No. GDNS51-061-23-004), the Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, (NCE-PPAM), and the Graduate School, Chulalongkorn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirilux Poompradub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaichua, B., Prasassarakich, P. & Poompradub, S. In situ silica reinforcement of natural rubber by sol–gel process via rubber solution. J Sol-Gel Sci Technol 52, 219–227 (2009). https://doi.org/10.1007/s10971-009-2019-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2019-x

Keywords

Navigation