Skip to main content
Log in

Structure and electrorheological properties of nanoporous BaTiO3 crystalline powders prepared by sol–gel method

  • Review
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, a novel nanoporous barium titanate (BaTiO3) crystalline powder was synthesized by using triblock poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) based systems (P-123) as the soft template via a sol–gel method and their structure-dependent electro rheological property was studied. The pore diameter and specific surface area of BaTiO3 were precisely controlled by varing the calcined temperature. The chemical composition, structure and surface morphology of BaTiO3 were characterized by X-ray diffraction (XRD), thermo gravimetric analysis (TGA), and nitrogen adsorption–desorption method, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The result revealed that the pore volume and specific surface area of BaTiO3 decreased with the increment of calcined temperature. The electro rheological fluids (ERFs) were obtained by dispersing BaTiO3 crystallites in silicon oil and three kinds ERFs were fabricated by using three kinds of BaTiO3 which were prepared under different calcined temperature (550, 600 and 900 °C) as the precursors. The behaviors of the ERFs were evaluated via a rotational rheometer fixed with electric field generator. The results showed that electro rheological effect was related to the pore volume and specific surface area of BaTiO3. Due to the distinct advantage of sol–gel method for preparing nanoporous BaTiO3 without contamination of the materials, the markedly low current destiny of the ERFs was obtained. The yield stress of ERFs with large specific surface area of BaTiO3 reached the maximum of 3 kPa, which is higher than that of ERFs using traditional pure BaTiO3 crystallites (lower than 1 kPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Satoshi O, Akira K, Hirofumi S, Kazuyoshi S, Hiroya A, Makio N (2008) Mater Lett 62:2957. doi:10.1016/j.matlet.2008.01.083

    Article  Google Scholar 

  2. Fang CY, Wang CP, Polotai AV, Agrawal DK, Lanagan MT (2008) Mater Lett 62:2551. doi:10.1016/j.matlet.2007.12.045

    Article  CAS  Google Scholar 

  3. Cui B, Yu PF, Wang X (2008) J Alloy Comp 459:589. doi:10.1016/j.jallcom.2007.07.039

    Article  CAS  Google Scholar 

  4. Chen YY, Yu BY, Wang JH, Cochran RE, Shyue JJ (2009) Inorg Chem 48:681. doi:10.1021/ic8018887

    Article  PubMed  CAS  Google Scholar 

  5. Zhang SY, Jiang FS, Qu G, Lin CY (2008) Mater Lett 62:2225. doi:10.1016/j.matlet.2007.11.055

    Article  CAS  Google Scholar 

  6. Wang ZY, Hu J, Yu MF (2006) Appl Phys Lett 89:263119. doi:10.1063/1.2425047

    Article  ADS  Google Scholar 

  7. Yuh JH, Nino JC, Sigmund WM (2005) Mater Lett 59:3645. doi:10.1016/j.matlet.2005.07.008

    Article  CAS  Google Scholar 

  8. Larsen G, Lotero E, Nabity M, Petkovic LM, Shobe DS (1996) J Catal 164:246. doi:10.1006/jcat.1996.0379

    Article  CAS  Google Scholar 

  9. Victor F, Stone J, Davis RJ (1998) Chem Mater 10:1468. doi:10.1021/cm980050r

    Article  Google Scholar 

  10. Corma A (1997) Chem Rev 97:2373. doi:10.1021/cr960406n

    Article  PubMed  CAS  Google Scholar 

  11. Zheng MB, Cao J, Liao ST, Liu JS, Chen HQ, Zhao Y, Dai WJ, Ji GB, Cao JM, Tao J (2009) J Phys Chem C 113:3887. doi:10.1021/jp810230d

    Article  CAS  Google Scholar 

  12. Li YF, Li HF, Li TH, Li GL, Cao R (2009) Microporous Mesoporous Mater 117:444. doi:10.1016/j.micromeso.2008.06.042

    Article  CAS  Google Scholar 

  13. Li H, Ni YH, Cai YF, Zhang L, Zhou JZ, Hong JM, Wei XW (2009) J Mater Chem 19:594. doi:10.1039/b818574c

    Article  CAS  Google Scholar 

  14. Moreira ML, Mambrini GP, Volanti DP, Leite ER, Orlandi MO, Pizani PS, Mastelaro VR, Paiva-Santos CO, Longo E, Varela JA (2008) Chem Mater 20:5381. doi:10.1021/cm801638d

    Article  CAS  Google Scholar 

  15. Orhan E, Varela JA (2005) Phys Rev B 71:085113. doi:10.1103/PhysRevB.71.085113

    Article  ADS  Google Scholar 

  16. Wang YG, Xu G, Yang LL, Ren ZH, Wei X, Weng WJ, Du PY, Shen G, Han GR (2009) Mater Lett 63:239. doi:10.1016/j.matlet.2008.09.050

    Article  CAS  Google Scholar 

  17. Wu ZB, Yoshimura M (1999) Solid State Ion 122:161. doi:10.1016/S0167-2738(99)00030-2

    Article  CAS  Google Scholar 

  18. Yamauchi Y, Kuroda K (2008) Chem Asian J 3:664. doi:10.1002/asia.200700350

    Article  PubMed  CAS  Google Scholar 

  19. Hou RZ, Ferreira P, Vilarinho PM (2008) Microporous Mesoporous Mater 110:392. doi:10.1016/j.micromeso.2007.06.051

    Article  CAS  Google Scholar 

  20. Zhang J, Ma YB, Shi F, Liu LQ, Deng YQ (2009) Microporous Mesoporous Mater 119:97. doi:10.1016/j.micromeso.2008.10.003

    Article  CAS  Google Scholar 

  21. Sun ZX, Zheng TT, Bo QB, Vaughan D, Warren M (2008) J Mater Chem 18:5941. doi:10.1039/b810202c

    Article  CAS  Google Scholar 

  22. Lia LX, Zou LD, Song HH, Morris G (2009) Carbon 47:775. doi:10.1016/j.carbon.2008.11.012

    Article  Google Scholar 

  23. Tsai MC, Chang JC, Sheu HS, Chiu HT, Lee CY (2009) Chem Mater 21:499. doi:10.1021/cm802327z

    Article  CAS  Google Scholar 

  24. Lee B, Yamashita T, Lu DL, Kondo JN, Domen K (2002) Chem Mater 14:867. doi:10.1021/cm010775m

    Article  CAS  Google Scholar 

  25. Block H, Kelly JP (1988) J Phys D Appl Phys 21:1661. doi:10.1088/0022-3727/21/12/001

    Article  ADS  CAS  Google Scholar 

  26. Wei JH, Zhao LH, Peng SL, Shi J, Liu ZY, Wen WJ (2008) J Sol–Gel Sci Technol 47:311. doi:10.1007/s10971-008-1787-z

    Article  CAS  Google Scholar 

  27. Gong XQ, Wu JB, Huang XX, Wen WJ, Sheng P (2008) Nanotechnology 19:165

    Google Scholar 

  28. Lopes KP, Cavalcante LS, Simões AZ, Varela JA, Longo E, Leite ER (2009) J Alloy Comp 468:327. doi:10.1016/j.jallcom.2007.12.085

    Article  CAS  Google Scholar 

  29. Yu PF, Cui B, Shi QZ (2008) Mater Sci Eng A 473:34. doi:10.1016/j.msea.2007.03.051

    Article  Google Scholar 

  30. Yin JB, Zhao XP (2002) Chem Mater 14:4633. doi:10.1021/cm020388s

    Article  CAS  Google Scholar 

  31. Cui B, Yu PF, Wang X (2008) J Alloy Comp 459:589. doi:10.1016/j.jallcom.2007.07.039

    Article  CAS  Google Scholar 

  32. Marques VS, Cavalcante LS, Sczancoski JC, Volanti DP, Espinosa JWM, Joya MR, Santos MRMC, Pizani PS, Varela JA, Longo E (2008) Solid State Sci 10:1056. doi:10.1016/j.solidstatesciences.2007.11.004

    Article  ADS  CAS  Google Scholar 

  33. Nunes MGB, Cavalcante LS, Santos V, Sczancoski JC, Santos MRMC, Santos-Júnior LS, Longo E (2008) J Sol–Gel Sci Technol 47:38. doi:10.1007/s10971-008-1751-y

    Article  CAS  Google Scholar 

  34. Wang BX, Zhao Y, Zhao XP (2007) Colloids Surf A Physicochem Eng Asp 295:27. doi:10.1016/j.colsurfa.2006.08.025

    Article  CAS  Google Scholar 

  35. Kim SG, Kim JW, Jang WH, Choi HJ, Jhon MS (2001) Polymer (Guildf) 42:5005. doi:10.1016/S0032-3861(00)00887-9

    Article  CAS  Google Scholar 

  36. Klingenberg DJ, Vanswol F, Zuoski CF (1991) J Chem Phys 94:6170. doi:10.1063/1.460403

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from National Basic Research Program of China (973 Program, Grant No. 2007CB936800) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanquan Jiang or Xinglong Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, W., Jiang, C., Gong, X. et al. Structure and electrorheological properties of nanoporous BaTiO3 crystalline powders prepared by sol–gel method. J Sol-Gel Sci Technol 52, 8–14 (2009). https://doi.org/10.1007/s10971-009-2011-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2011-5

Keywords

Navigation