Skip to main content
Log in

Preparation and characterization of transparent TiO2 thin films coated on fused-silica substrates

  • Original paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The transparent TiO2 thin films coated on fused-SiO2 substrates were prepared by the sol–gel method and spin-coating technique. Effects of calcination temperature on crystal structure, grain size, surface texture, and light transmittance of the films were investigated. After calcining at 600–1,200 °C, the thicknesses of the TiO2 films were all around 80 nm and the molecular structures of the films were anatase, even at 1,200 °C. The calcined TiO2 films had the ultraviolet light (wavelength 200–400 nm) transmittances of ≤29% and the visible light (wavelength 400–800 nm) transmittance of ≥72%. By photocatalytically decomposing the methylene blue (MB) in water, the photocatalytic activities of the TiO2 thin films were measured and represented using the characteristic time constant (τ) for the MB degradation. While the films prepared at 1,000 and 1,200 °C photodecomposed about 54 mol% of the MB in water (the corresponding τ ≈ 14.8 h) after exposing to 365-nm UV light for 12 h, the films prepared at 600 and 800 °C had smaller τ (≈9.0 h) and photodecomposed about 74 mol% of the MB in water at the same testing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. doi:10.1021/cr00033a004

    Article  CAS  Google Scholar 

  2. Ohko Y, Hashimoto K, Fujishima A (1997) Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films. J Phys Chem A 101:8057–8062. doi:10.1021/jp972002k

    Article  CAS  Google Scholar 

  3. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol Chem 1:1–21. doi:10.1016/S1389-5567(00)00002-2

    Article  CAS  Google Scholar 

  4. Gopal M, Moberly Chan WJ, De Jonghe LC (1997) Room temperature synthesis of crystalline metal oxides. J Mater Sci 32:6001–6008. doi:10.1023/A:1018671212890

    Article  CAS  Google Scholar 

  5. Anpo M (2004) Preparation, characterization, and reactivities of highly functional titanium oxide-based photocatalysts able to operate under UV–Vis light irradiation: approaches in realizing high efficiency in the use of visible light. Bull Chem Soc Jpn 77:1427–1442. doi:10.1246/bcsj.77.1427

    Article  CAS  Google Scholar 

  6. Yu JC, Yu J, Zhang L, Ho W (2002) Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO2 powders. J Photochem Photobiol A 148:263–271. doi:10.1016/S1010-6030(02)00052-7

    Article  CAS  Google Scholar 

  7. Gruss KA, Davis RF (1999) Adhesion measurement of zirconium nitride and amorphous silicon carbide coatings to nickel and titanium alloys. Surf Coat Tech 114:156–168. doi:10.1016/S0257-8972(99)00042-0

    Article  CAS  Google Scholar 

  8. Grögler T, Zeiler E, Franz A, Plewa O, Rosiwal SM, Singer RF (1999) Erosion resistance of CVD diamond-coated titanium alloy for aerospace applications. Surf Coat Tech 112:129–132. doi:10.1016/S0257-8972(98)00800-7

    Article  Google Scholar 

  9. Wenbin X, Shurong D, Demiao W, Gaochao R (2008) Investigation of microstructure evolution in Pt-doped TiO2 thin films deposited by rf magnetron sputtering. Physica B 403:2698–2701. doi:10.1016/j.physb.2008.01.048

    Article  ADS  Google Scholar 

  10. Xu Y, Shen M (2008) Fabrication of anatase-type TiO2 films by reactive pulsed laser deposition for photocatalyst application. J Mater Process Technol 202:301–306. doi:10.1016/j.jmatprotec.2007.09.015

    Article  CAS  Google Scholar 

  11. Jin F, Chu PK, Wang K, Zhao J, Huang A, Tong H (2008) Thermal stability of titania films prepared on titanium by micro-arc oxidation. Mater Sci Eng A 476:78–82. doi:10.1016/j.msea.2007.05.070

    Article  Google Scholar 

  12. Miyauchi M, Tokudome H (2007) Super-hydrophilic and transparent thin films of TiO2 nanotube arrays by a hydrothermal reaction. J Mater Chem 17:2095–2100. doi:10.1039/b700387k

    Article  CAS  Google Scholar 

  13. Yoko T, Hu L, Kozuka H, Sakka S (1996) Photoelectrochemical properties of TiO2 coating films prepared using different solvents by the sol–gel method. Thin Solid Films 283:188–195. doi:10.1016/0040-6090(95)08222-0

    Article  ADS  CAS  Google Scholar 

  14. Yu J, Zhao X, Zhao Q (2000) Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol–gel method. Thin Solid Films 379:7–14. doi:10.1016/S0040-6090(00)01542-X

    Article  ADS  CAS  Google Scholar 

  15. Lu C, Wu W, Kale RB (2007) Synthesis of photocatalytic TiO2 thin films via the high-pressure crystallization process at low temperatures. J Hazard Mater 147:213–218. doi:10.1016/j.jhazmat.2006.12.068

    Article  PubMed  CAS  Google Scholar 

  16. Addamo M, Augugliaro V, Di Paola A, García-López E, Loddo V, Marcì G, Palmisano L (2008) Photocatalytic thin films of TiO2 formed by a sol–gel process using titanium tetraisopropoxide as the precursor. Thin Solid Films 516:3802–3807. doi:10.1016/j.tsf.2007.06.139

    Article  ADS  CAS  Google Scholar 

  17. Zhang W, Chen Y, Yu S, Chen S, Yin Y (2008) Preparation and antibacterial behavior of Fe3+-doped nanostructured TiO2 thin films. Thin Solid Films 516:4690–4694. doi:10.1016/j.tsf.2007.08.053

    Article  ADS  CAS  Google Scholar 

  18. Chang CC, Chen JY, Hsu TL, Lin CK, Chan CC (2008) Photocatalytic properties of porous TiO2/Ag thin films. Thin Solid Films 516:1743–1747. doi:10.1016/j.tsf.2007.05.033

    Article  ADS  CAS  Google Scholar 

  19. Epifani M, Helwig A, Arbiol J, Díaz R, Francioso L, Siciliano P, Mueller G, Morante JR (2008) TiO2 thin films from titanium butoxide: synthesis, Pt addition, structural stability, microelectronic processing and gas-sensing properties. Sensors Actuators B 130:599–608. doi:10.1016/j.snb.2007.10.016

    Article  Google Scholar 

  20. Gilfrich JV, Huang TC, Hubbard CR, James MR, Jenkins R, Lachance GR, Smith DK, Predecki PK (1990) Advances in X-ray analysis, vol 36. Plenum Press, New York

    Google Scholar 

  21. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, New York

    Google Scholar 

  22. Syarif DG, Miyashita A, Yamaki T, Sumita T, Choi Y, Itoh H (2002) Preparation of anatase and rutile thin films by controlling oxygen partial pressure. Appl Surf Sci 193:287–292. doi:10.1016/S0169-4332(02)00532-9

    Article  ADS  CAS  Google Scholar 

  23. Madhusudan Reddy K, Gopal Reddy CV, Manorama SV (2001) Preparation, characterization, and spectral studies on nanocrystalline anatase TiO2. J Solid State Chem 158:180–186. doi:10.1006/jssc.2001.9090

    Article  ADS  CAS  Google Scholar 

  24. Tilley RJD (2004) Understanding solids: the science of materials. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsuan-Fu Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, HF., Hu, FC. Preparation and characterization of transparent TiO2 thin films coated on fused-silica substrates. J Sol-Gel Sci Technol 52, 158–165 (2009). https://doi.org/10.1007/s10971-009-2005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2005-3

Keywords

Navigation