Skip to main content
Log in

Sol–gel synthesis and crystallization behaviour of β-spodumene

  • Original paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Lithium aluminum silicate powders in the form of β-spodumene were synthesized through sol–gel technique by mixing boehmite sol, silica sol and lithium salt. The gel and oxide powders were characterized by thermogravimetry, differential thermal analysis (DTA), X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and scanning electron microscopy. DTA, XRD and FTIR results confirmed that crystallization of β-spodumene took place at about 800 °C. The tiny crystallites with average size less than 1 μm appeared when the gel powders were sintered at 800 °C. A substantial increase of the crystal grain size was observed with increasing sintering temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lichtenstein AI, Jones RO, De Gironcoli S, Baroni S (2000) Phys Rev B 62:11487. doi:10.1103/PhysRevB.62.11487

    Article  ADS  CAS  Google Scholar 

  2. Karmakar B, Kundu P, Jana S, Dwivedi RN (2002) J Am Ceram Soc 85:2572. doi:10.1111/j.1151-2916.2002.tb00498.x

    Article  CAS  Google Scholar 

  3. Lin MH, Wang MC (1995) J Mater Sci 30:2716. doi:10.1007/BF00362157

    Article  ADS  CAS  Google Scholar 

  4. Guo XZ, Yang H, Cao M, Han C, Song FF (2006) T Nonferr Met Soc 16:593. doi:10.1016/S1003-6326(06)60104-0

    Article  CAS  Google Scholar 

  5. Hu AM, Liang KM, Peng F, Wang GL, Shao H (2004) Thermochim Acta 413:53. doi:10.1016/j.tca.2003.10.025

    Article  CAS  Google Scholar 

  6. Hu AM, Liang KM, Li M, Mao DL (2006) Mater Chem Phys 98:430. doi:10.1016/j.matchemphys.2005.09.060

    Article  CAS  Google Scholar 

  7. Guo XZ, Yang H (2006) Mater Res Bull 41:396. doi:10.1016/j.materresbull.2005.08.002

    Article  CAS  Google Scholar 

  8. Kim KD, Lee SH, Ahn HK (2004) J Non-Cryst Solids 336:195. doi:10.1016/j.jnoncrysol.2004.01.001

    Article  ADS  CAS  Google Scholar 

  9. Wang MC (1994) J Mater Res 9:2290. doi:10.1557/JMR.1994.2290

    Article  ADS  CAS  Google Scholar 

  10. Hardy AB, Gowda G, McMahon TJ, Riman RE, Rhine WE, Bowen HK (1988) Ultrastructure processing of advanced ceramics. Wiley, New York

    Google Scholar 

  11. Selvaraj U, Komarneni S, Roy R (1990) J Am Ceram Soc 73:3663. doi:10.1111/j.1151-2916.1990.tb04273.x

    Article  CAS  Google Scholar 

  12. Bradley DC, Mehrotra RC, Gaur DP (1978) Metal alkoxides. Academic Press, New York

    Google Scholar 

  13. Yoldas BE (1979) J Mater Sci 14:1843. doi:10.1007/BF00551023

    Article  ADS  CAS  Google Scholar 

  14. Suzuki H, Ota K, Saito H (1987) J Ceram Soc Jpn 95:163

    CAS  Google Scholar 

  15. Naskar MK, Chatterjee M (2005) Mater Lett 59:998. doi:10.1016/j.matlet.2004.06.075

    Article  Google Scholar 

  16. Ghosh NN, Pramanik P (2001) Mat sci Eng C-Bios 16:113

    Article  Google Scholar 

  17. Mandal S, Chakrabarti S, Das SK, Ghatak S (2007) Ceram Int 33:123. doi:10.1016/j.ceramint.2005.08.015

    Article  CAS  Google Scholar 

  18. Naskar MK, Chatterjee M, Lakshmi NS (2002) J Mater Sci 37:343. doi:10.1023/A:1013656413578

    Article  CAS  Google Scholar 

  19. Wang MC, Yang S, Wen SB, Wu NC (2002) Mater Chem Phys 76:162–170. doi:10.1016/S0254-0584(01)00519-3

    Article  CAS  Google Scholar 

  20. Kim IH, Kaneko N, Uchiyama N, Lee JE, Takeya K, Kawahara N, Goda Y (2006) Chem Pharm Bull (Tokyo) 54:275. doi:10.1248/cpb.54.275

    Article  CAS  Google Scholar 

  21. Lopez T, Sanchez E, Bosch P, Meas Y, Gomez R (1992) Mater Chem Phys 32:141. doi:10.1016/0254-0584(92)90270-I

    Article  CAS  Google Scholar 

  22. Samanta AK, Dhargupta KK, Ghatak S (2000) J Eur Ceram Soc 20:1883. doi:10.1016/S0955-2219(00)00082-0

    Article  CAS  Google Scholar 

  23. Murthy MK, Kirby EM (1962) J Am Ceram Soc 45:324. doi:10.1111/j.1151-2916.1962.tb11160.x

    Article  CAS  Google Scholar 

  24. Ignat’eva LA (1959) Opt Spectrosc 6:527

    ADS  Google Scholar 

  25. Roy BN (1987) J Am Ceram Soc 70:183. doi:10.1111/j.1151-2916.1987.tb04955.x

    Article  CAS  Google Scholar 

  26. Jang HM, Kim KS, Jung CJ (1992) J Mater Res 7:2273. doi:10.1557/JMR.1992.2273

    Article  ADS  CAS  Google Scholar 

  27. Covino J, De Laat FGA, Welsbie RA (1986) J Non-Cryst Solids 82:329. doi:10.1016/0022-3093(86)90149-3

    Article  ADS  CAS  Google Scholar 

  28. Ghosh NN, Pramanik P (1997) Br Ceram T 96:155

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by program of excellent Team in Harbin Institute of Technology and National Natural Science Fundation of China (Grant No. 50672018) and National High-tech R&D Program (863 Program) (Grant No. 2007AA03Z340).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Xia or Guangwu Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, L., Wen, G., Song, L. et al. Sol–gel synthesis and crystallization behaviour of β-spodumene. J Sol-Gel Sci Technol 52, 134–139 (2009). https://doi.org/10.1007/s10971-009-2001-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2001-7

Keywords

Navigation