Skip to main content

Effect of acidity on the formation of silica–chitosan hybrid materials and thermal conductive property

Abstract

In this study, the formation of silica–chitosan hybrid materials via sol–gel process under pH values of 2–6 were investigated using N2 sorption analysis, scanning electron microscopy, transmission electron microscopy, thermal analysis and zeta potential analyzer. The hierarchical structure consisting of meso- and macropore was formed when pH value was higher than 2. Mesopores were formed as the interparticle channels of silica nanoparticles aggregates, whereas macropores were the void between the aggregates (clusters). The clusters size was decreased with increasing the pH value, resulting in the increase of the macroporosity. The thermal conductivity of the products was controlled in the range of 0.06 and 0.13 W m−1 K−1 by varying the product porosity between 88 and 69% (pH 6 and pH 2, respectively).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alesi S, Di Maria F, Melucci M, Macquarrie DJ, Luque R, Barbarella G (2008) Green Chem 10:517. doi:10.1039/b718776a

    Article  CAS  Google Scholar 

  2. Hun X, Zhang Z (2008) Sens Actuators B Chem 131:403. doi:10.1016/j.snb.2007.11.055

    Article  Google Scholar 

  3. Zhang R, Yang C (2008) J Mater Chem 18:2691. doi:10.1039/b800025e

    Article  CAS  Google Scholar 

  4. Yeh J-T, Chen C-L, Huang K-S (2007) Mater Lett 61:1292. doi:10.1016/j.matlet.2006.07.016

    Article  CAS  Google Scholar 

  5. Pedroni V, Schulz PC, Gschaider de Ferreira ME, Morini MA (2000) Colloid Polym Sci 278:964. doi:10.1007/s003960000348

    Article  CAS  Google Scholar 

  6. Witoon T, Chareonpanich M, Limtrakul J (2008) Mater Lett 62:1476. doi:10.1016/j.matlet.2007.09.004

    Article  CAS  Google Scholar 

  7. Rashidova SSh, Shakarova DSh, Ruzimuradov ON, Satubaldieva DT, Zalyalieva SV, Shpigun OA, Varlamov VP, Kabulov BD (2004) J Chromatogr B 800:49. doi:10.1016/j.jchromb.2003.10.015

    Article  CAS  Google Scholar 

  8. Suzuki T, Mizushima Y, Umeda T, Ohashi R (1999) J Biosci Bioeng 88:194. doi:10.1016/S1389-1723(99)80201-1

    PubMed  Article  CAS  Google Scholar 

  9. Ayers MR, Hunt AJ (2001) J Non-Cryst Solids 285:123. doi:10.1016/S0022-3093(01)00442-2

    Article  ADS  CAS  Google Scholar 

  10. Hu X, Littrel K, Ji S, Pickles DG, Risen WM Jr (2001) J Non-Cryst Solids 288:184. doi:10.1016/S0022-3093(01)00625-1

    Article  ADS  CAS  Google Scholar 

  11. Retuert J, Quijada R, Arias V (2003) J Mater Res 18:487. doi:10.1557/JMR.2003.0062

    Article  ADS  CAS  Google Scholar 

  12. Brinker CJ, Scherer GW (1990) Sol–gel science. Academic Press, New York

    Google Scholar 

  13. Hench LL, West JK (1990) Chem Rev 90:33. doi:10.1021/cr00099a003

    Article  CAS  Google Scholar 

  14. Patwardhan SV, Clarson SJ (2003) Mater Sci Eng C 23:495

    Google Scholar 

  15. Bandyopadhyay A, Sarkar MD, Bhowmick AK (2006) J Mater Sci 41:5981. doi:10.1007/s10853-006-0254-x

    Article  ADS  CAS  Google Scholar 

  16. Ogoshi T, Chujo Y (2005) J Mater Chem 15:315. doi:10.1039/b411448e

    Article  CAS  Google Scholar 

  17. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710. doi:10.1038/359710a0

    Article  ADS  CAS  Google Scholar 

  18. Takahashi R, Sato S, Sodesawa T, Tomita Y (2005) J Ceram Soc Jpn 113:92. doi:10.2109/jcersj.113.92

    Article  CAS  Google Scholar 

  19. Colombo P (2008) J Eur Ceram Soc 28:1389. doi:10.1016/j.jeurceramsoc.2007.12.002

    Article  CAS  Google Scholar 

  20. Gonçalves MRF, Bergmann CP (2007) Constr Build Mater 21:2059. doi:10.1016/j.conbuildmat.2006.05.057

    Article  Google Scholar 

  21. Chareonpanich M, Namto T, Kongkachuichay P, Limtrakul J (2004) Fuel Process Technol 85:1623. doi:10.1016/j.fuproc.2003.10.026

    Article  CAS  Google Scholar 

  22. Odlyha M, Scott RPW, Simpson CF (1993) J Therm Anal 40:1197. doi:10.1007/BF02546883

    Article  CAS  Google Scholar 

  23. Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  24. Anal AK, Tobiassen A, Flanagan J, Singh H (2008) Colloids surf B 64:104

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Thailand Research Fund through the Royal Golden Jubilee PhD Program (Grant No. PHD/0012/2548), the National Nanotechnology Center through its National Nanoscience Consortium, the Kasetsart University Research and Development Institute, and Center of Excellence for Petroleum, Petrochemicals and Advanced Materials (PARDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Metta Chareonpanich.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Witoon, T., Chareonpanich, M. & Limtrakul, J. Effect of acidity on the formation of silica–chitosan hybrid materials and thermal conductive property. J Sol-Gel Sci Technol 51, 146–152 (2009). https://doi.org/10.1007/s10971-009-1986-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-1986-2

Keywords

  • Hybrid materials
  • Sol–gel preparation
  • Chitosan
  • Rice husk
  • Thermal conductivity