Advertisement

Journal of Sol-Gel Science and Technology

, Volume 51, Issue 2, pp 198–203 | Cite as

Preparation of ZnO nanoparticles by a surfactant-assisted complex sol–gel method using zinc nitrate

  • Y. L. Zhang
  • Y. Yang
  • J. H. Zhao
  • R. Q. Tan
  • P. Cui
  • W. J. Song
Original Paper

Abstract

This paper presents a surfactant-assisted complex sol–gel method for the controlled preparation of Zinc Oxide (ZnO) nanoparticles using zinc nitrate and citric acid as starting material. ZnO nanoparticles with a pure wurtzite structure were obtained after calcination at 773 K. The effects of the citric acid concentration, the pH, and the surfactants on the average particle size and morphology of the ZnO nanoparticles were investigated using X-ray diffraction and scanning electron microscopy. Well dispersed ZnO nanoparticles with a uniform size distribution were obtained using polyethylene glycol (PEG) 2000 as a surfactant. During sintering, the ZnO nanoparticles revealed isotropic growth below 1,373 K and anisotropic growth above 1,473 K. The particles’ activation energy was calculated to be 140 ± 6 kJ/mol between 773 and 1,373 K.

Keywords

ZnO Nanoparticles Sol–gel Sintering 

References

  1. 1.
    Polarz S, Neues F, van den Berg MWE, Grünert W, Khodeir L (2005) J Am Chem Soc 127:12028. doi: 10.1021/ja0516514 PubMedCrossRefGoogle Scholar
  2. 2.
    Narendar Y, Messing GL (1997) Catal Today 35:247–268. doi: 10.1016/S0920-5861(96)00160-5 CrossRefGoogle Scholar
  3. 3.
    Xu HY, Liu XL, Cui DL, Li M, Jiang MH (2006) Sens Actuators B Chem 114:301. doi: 10.1016/j.snb.2005.05.020 CrossRefGoogle Scholar
  4. 4.
    Sheng X, Zhao Y, Zhai J, Jiang L, Zhu D (2007) Appl Phys A 87:715. doi: 10.1007/s00339-007-3869-0 CrossRefADSGoogle Scholar
  5. 5.
    Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho SJ, Morkoç H (2005) J Appl Phys 98:041301. doi: 10.1063/1.1992666 CrossRefADSGoogle Scholar
  6. 6.
    Liang JB, Liu JW, Xie Q, Bai S, Yu WC, Qian YT (2005) J Phys Chem B 109:9463. doi: 10.1021/jp050485j PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang J, Sun LD, Yin JL, Su HL, Liao CS, Yan CH (2002) Chem Mater 14:4172–4177. doi: 10.1021/cm020077h CrossRefGoogle Scholar
  8. 8.
    Chen S, Kumar RV, Gedanken A, Zaban A (2001) Isr J Chem 41:51–54. doi: 10.1560/HQ1V-8KAG-5KQK-E91F CrossRefGoogle Scholar
  9. 9.
    Wu ZY, Bao ZX, Zou XP, Tang DS (2003) Mater Sci Technol 19:981–984. doi: 10.1179/026708303225003081 CrossRefGoogle Scholar
  10. 10.
    Hou Y, Yang M, Pang GS, Feng SH (2008) J Mater Sci 43:2149–2152. doi: 10.1007/s10853-007-1958-2 CrossRefADSGoogle Scholar
  11. 11.
    Ohyama M (1998) J Am Ceram Soc 81:1622–1632CrossRefGoogle Scholar
  12. 12.
    Werde K, Mondelaers D, Vanholand G, Nelis D, Van Bael MK, Mullens J, Van Poucke LC (2002) J Mater Sci 37:81–88. doi: 10.1023/A:1013141723764 CrossRefGoogle Scholar
  13. 13.
    Abdullah M, Okuyama K (2004) PROC ITB Eng Sci 36:141–153Google Scholar
  14. 14.
    Mondelaers D, Vanholand G, Van den Ral H, Haen JD, Van Bael MK, Mullens J, Van Poucke LC (2002) Mater Res Bull 37:901–914. doi: 10.1016/S0025-5408(02)00727-4 CrossRefGoogle Scholar
  15. 15.
    JCPDS (1997) Powder diffraction file of inorganic phases, joint committee on powder diffraction standards, powder diffraction file no. 36–1451. Swarthmore, PAGoogle Scholar
  16. 16.
    Anedda R, Cannas C, Musinu A, Pinna G, Piccaluga G, Casu M (2008) J Nanopart Res 10:107–120. doi: 10.1007/s11051-007-9235-5 CrossRefGoogle Scholar
  17. 17.
    Hardy A, Haen JD, Van Bael MK, Mullens J (2007) J Sol–Gel Sci Technol 44:65–74. doi: 10.1007/s10971-007-1601-3 CrossRefGoogle Scholar
  18. 18.
    Yu K, Jin ZG, Liu XX, Liu ZF, Fu YN (2007) Mater Lett 61:2775–2778. doi: 10.1016/j.matlet.2006.10.029 CrossRefGoogle Scholar
  19. 19.
    Huang ZB, Tang FQ, Zhang L (2005) Thin Solid Films 471:105–112. doi: 10.1016/j.tsf.2004.04.042 CrossRefADSGoogle Scholar
  20. 20.
    Sang WB, Fang YY, Fan JR, He Y, Min JH, Qian YB (2007) J Cryst Growth 299:272–276. doi: 10.1016/j.jcrysgro.2006.10.240 CrossRefADSGoogle Scholar
  21. 21.
    Ferri JK, Stebe KJ (2000) Adv Colloid Interface Sci 85:61–97. doi: 10.1016/S0001-8686(99)00027-5 PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang YF, Zhang JX, Lu QM, Zhang QY (2006) Mater Lett 60:2443–2446. doi: 10.1016/j.matlet.2006.01.013 CrossRefGoogle Scholar
  23. 23.
    Yang J, Lian JS, Dong QZ, Guan QF, Chen JW, Guo ZX (2003) Mater Lett 57:2792–2797Google Scholar
  24. 24.
    Hynes AP, Doremus RH, Siegel RW (2002) J Am Ceram Soc 85:1979–1987CrossRefGoogle Scholar
  25. 25.
    Han JP, Mantas PQ, Senos AMR (2001) J Mater Res 16:459–468. doi: 10.1557/JMR.2001.0069 CrossRefADSGoogle Scholar
  26. 26.
    Gupta TK, Coble RL (1968) J Am Ceram Soc 51:521–525. doi: 10.1111/j.1151-2916.1968.tb15679.x CrossRefGoogle Scholar
  27. 27.
    Dutta SK, Spriggs RM (1970) J Am Ceram Soc 53:61–62. doi: 10.1111/j.1151-2916.1970.tb12007.x CrossRefGoogle Scholar
  28. 28.
    German RM, Messing GL, Cornwall RG (1996) Sintering technology. Netlibrary Incorporated. Technology & Engineering/Metallurgy ISBN: 0585352208Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Y. L. Zhang
    • 1
  • Y. Yang
    • 1
  • J. H. Zhao
    • 1
  • R. Q. Tan
    • 2
  • P. Cui
    • 1
  • W. J. Song
    • 1
  1. 1.Division of Functional Materials and Nanodevices, Ningbo Institute of Material Technology and EngineeringChinese Academy of SciencesNingboPeople’s Republic of China
  2. 2.College of Information Science and EngineeringNingbo UniversityNingboPeople’s Republic of China

Personalised recommendations