Abstract
ε-Fe2O3/SiO2 nanocomposite was prepared by novel solgel method using single precursor for both nanoparticles and matrix. This method allows to prepare the samples free of α-Fe2O3 with 40% of Fe2O3 in SiO2. Nanoparticles of 12 nm diameter were obtained by annealing at 1,000 °C. The samples were characterized by powder X-ray diffraction and transmission electron microscopy. Mössbauer spectroscopy identified ε-Fe2O3 as the only magnetically ordered phase at room temperature. Magnetic measurements revealed progressive necking of hysteresis loops measured at 300 and 2 K. In both cases the intrinsic coercivity reaches only 0.25 T. Measurements up to 14 T shows monotonous decreasing trend of saturated magnetization with increasing temperature.
This is a preview of subscription content,
to check access.







References
Jin J, Hashimoto K, Ohkoshi S (2005) J Mater Chem 15:1067–1071. doi:10.1039/b416554c
Kurmoo M, Rehspringer J-L, Hutlová A, D’Orléans C, Vilminot S, Estournès C, Nižňanský D (2005) Chem Mater 17:1106–1114. doi:10.1021/cm0482838
Gich M, Frontera C, Roig A, Fontcuberta J, Molins E, Bellido N, Simon C, Fleta C (2006) Nanotechnology 17:687–691. doi:10.1088/0957-4484/17/3/012
Gich M, Frontera C, Roig A, Taboada E, Molins E, Rechenberg HR, Ardisson JD, Macedo WAA, Ritter C, Hardy V, Sort J, Skumryev V, Nogués J (2006) Chem Mater 18:3889–3897. doi:10.1021/cm060993l
Forestier H, Guiot-Guillain G (1934) C R Acad Sci Paris 199:720
Schrader R, Büttner G (1963) Z Anorg Allg Chem 320:220. doi:10.1002/zaac.19633200503
Walter-Lévy L, Quémeneur E (1963) C R Acad Sci Paris 257:3410
Trautmann JM, Forestier H (1965) C R Acad Sci Paris 261:4423
Dézsi I, Coey JMD (1973) Phys Status Solidi A 15:681. doi:10.1002/pssa.2210150239
Nižňanský D, Rehspringer J-L, Drillon M (1994) IEEE Trans Magn 30:821–823. doi:10.1109/20.312420
Chanéac C, Tronc E, Jolivet JP (1995) Nanostruct Mater 6:715–718. doi:10.1016/0965-9773(95)00158-1
Viart N (1996) Doctoral Thesis, Univ. Strasbourg
Hutlova A (2003) Doctoral Thesis, Univ. Strasbourg
Jin J, Ohkoshi S, Hashimoto K (2004) Adv Mater 16:48–51. doi:10.1002/adma.200305297
Kelm K, Mader W (2005) Z Anorg Allg Chem 631:2383–2389. doi:10.1002/zaac.200500283
Zbořil R, Mashláň M, Petridis D (2002) Hyperfine Interact 139/140:597–606. doi:10.1023/A:1021226929237
Platas-Iglesias C, Corsi DM, van der Elst L, Muller RN, Imbert D, Bunzli JCD, Toth E, Maschmeyer T, Peters JA (2003) Dalton Trans 4:727–737. doi:10.1039/b211060a
Tronc E, Chanéac C, Jolivet JP (1998) J Solid State Chem 139:93–104. doi:10.1006/jssc.1998.7817
Popovici M, Gich M, Nižňanský D, Roig A, Savii C, Casas L, Molins E, Závěta K, Enache C, Sort J, de Brion S, Chouteau G, Nogués J (2004) Chem Mater 16:5542–5548. doi:10.1021/cm048628m
Ohkoshi S, Sakurai S, Jin J, Hashimoto K (2005) J Appl Phys 97:10K312
Lee S-J, Jeong J-R, Shin S-C, Kim J-C, Kim J-D (2004) J Magn Magn Mater 282:147–150. doi:10.1016/j.jmmm.2004.04.035
Acknowledgments
This work was supported by the Czech Science Foundation (Grant No. 106/07/0949). J. P. V. thanks the Ministry of Education of the Czech Republic (research plan MSM0021620834).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Brázda, P., Nižňanský, D., Rehspringer, JL. et al. Novel sol–gel method for preparation of high concentration ε-Fe2O3/SiO2 nanocomposite. J Sol-Gel Sci Technol 51, 78–83 (2009). https://doi.org/10.1007/s10971-009-1941-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10971-009-1941-2