Skip to main content
Log in

Preparation, characterization and activity evaluation of p–n junction photocatalyst p-NiO/n-ZnO

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, p–n junction photocatalyst NiO/ZnO was prepared by the sol–gel method using Ni (NO3)2 and zinc acetate as the raw materials. The structural and optical properties of the p–n junction photocatalyst NiO/ZnO were characterized by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) analysis, UV–Vis diffuse reflection spectrum (DRS) and the fluorescence emission spectra. The photocatalytic activity of the photocatalyst was evaluated by photocatalytic reduction of Cr2O7 2− and photocatalytic oxidation of methyl orange (MO). The results showed that the photocatalytic activity of the p–n junction photocatalyst NiO/ZnO is much higher than that of ZnO on the photocatalytic reduction of Cr2O7 2−. However, the photocatalytic activity of the photocatalyst is much lower than that of ZnO on the photocatalytic oxidation of methyl orange. Namely, the p–n junction photocatalyst NiO/ZnO has higher photocatalytic reduction activity, but lower photocatalytic oxidation activity. The heat treatment condition also influences the photocatalytic activity strongly, and the best preparation condition is about 400 °C for 2 h. Effect of the heat treatment condition on the photocatalytic activity of the photocatalyst was also investigated. The mechanisms of influence on the photocatalytic activity were discussed by the p–n junction principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Qiu X, Li L, Zheng J, Liu J, Sun X, Li G (2008) J Phys Chem C 112:12242. doi:10.1021/jp803129e

    Article  CAS  Google Scholar 

  2. Pauporte T, Rathousky J (2007) J Phys Chem C 111:7639. doi:10.1021/jp071465f

    Article  CAS  Google Scholar 

  3. Dindar B, Icli S (2001) J Photochem Photobiol Chem 140:263. doi:10.1016/S1010-6030(01)00414-2

    Article  CAS  Google Scholar 

  4. Mrowetz M, Selli E (2006) J Photochem Photobiol Chem 180:15. doi:10.1016/j.jphotochem.2005.09.009

    Article  CAS  Google Scholar 

  5. Li D, Haneda H (2003) Chemosphere 51:129. doi:10.1016/S0045-6535(02)00787-7

    Article  PubMed  CAS  Google Scholar 

  6. Sobana N, Swaminathan M (2007) Separ Purif Tech 56:101. doi:10.1016/j.seppur.2007.01.032

    Article  CAS  Google Scholar 

  7. Yu JG, Yu XX (2008) Environ Sci Technol 42:4902. doi:10.1021/es800036n

    Article  PubMed  CAS  Google Scholar 

  8. Chen CC, Fan HJ, Jan JL (2008) J Phys Chem C 112:11962. doi:10.1021/jp801027r

    Article  CAS  Google Scholar 

  9. Su WY, Zhang YF, Li ZH, Wu L, Wang XX, Li JQ, Fu XZ (2008) Langmuir 24:3422. doi:10.1021/la701645y

    Article  PubMed  CAS  Google Scholar 

  10. Wang X, Lian W, Fu X, Basset JM, Lefebvre F (2006) J Catal 238:13. doi:10.1016/j.jcat.2005.11.027

    Article  CAS  Google Scholar 

  11. Marcì G, Augugliaro V, López-Muñoz MJ (2001) J Phys Chem B 105:1026. doi:10.1021/jp003172r

    Article  Google Scholar 

  12. Marcì G, Augugliaro V, López-Muñoz MJ (2001) J Phys Chem B 105:1033. doi:10.1021/jp003173j

    Article  Google Scholar 

  13. Qiu XQ, Li LP, Fu XZ, Li GS (2008) J Nanosci Nanotechnol 8:1301. doi:10.1166/jnn.2008.283

    Article  PubMed  CAS  Google Scholar 

  14. Zheng Y, Chen C, Zhan Y, Lin X, Zheng Q, Wei K, Zhu J (2008) J Phys Chem C 112:10773. doi:10.1021/jp8027275

    Article  CAS  Google Scholar 

  15. Tang H, Chang JC, Shan Y, Lee ST (2008) J Phys Chem B 112:4016. doi:10.1021/jp0775707

    Article  PubMed  CAS  Google Scholar 

  16. Wen Z, Wang G, Lu W, Wang Q, Zhang Q, Li J (2007) Cryst Growth Des 7:1722. doi:10.1021/cg060801z

    Article  CAS  Google Scholar 

  17. Zhang ZH, Yuan Y, Fang YJ, Liang LH, Ding HC, Jin LT (2007) Talanta 73:523. doi:10.1016/j.talanta.2007.04.011

    Article  PubMed  CAS  Google Scholar 

  18. Hong RY, Zhang SZ, Di GQ, Li HZ, Zheng Y, Ding J, Wei DG (2008) Mater Res Bull 43:2457. doi:10.1016/j.materresbull.2007.07.035

    Article  CAS  Google Scholar 

  19. Cham K, Seok JD, Se GL, Sung JL, Ho YK (2007) Appl Catal Gen 330:127. doi:10.1016/j.apcata.2007.07.016

    Article  Google Scholar 

  20. Doggett B, Chakrabarti S, O’Haire R, Meaney A, McGlynn E, Henry MO, Mosnier JP (2007) Superlattices Microstruct 42:74. doi:10.1016/j.spmi.2007.04.028

    Article  ADS  CAS  Google Scholar 

  21. Shinya M, Tadaaki I, Kimio A, Zhang QW, Fumio S, Shozo TK (2007) Chem Phys Lett 436:373. doi:10.1016/j.cplett.2007.01.067

    Article  Google Scholar 

  22. Wang X, Hu P, Fangli Y, Yu L (2007) J Phys Chem C 111:6706. doi:10.1021/jp070382w

    Article  CAS  Google Scholar 

  23. Lin J, Lin J, Zhu YF (2007) Inorg Chem 46:8372. doi:10.1021/ic701036k

    Article  PubMed  CAS  Google Scholar 

  24. Hsiao KC, Liao SC, Chen YJ (2007) Mater Sci Eng A 447:71. doi:10.1016/j.msea.2006.10.116

    Article  Google Scholar 

  25. Wang RH, Xin JH, Yang Y, Liu HF, Xu LM, Hu JH (2004) Appl Surf Sci 227:312

    Article  ADS  CAS  Google Scholar 

  26. Kanade KG, Kale BB, Baeg JO, Lee SM, Lee CW, Moon SJ, Chang H (2007) Mater Chem Phys 102:98

    Article  CAS  Google Scholar 

  27. Sakthivel S, Geissen SU, Bahnemann DW, Murugesan V, Vogelpohl A (2002) J Photochem Photobiol Chem 148:283. doi:10.1016/S1010-6030(02)00055-2

    Article  CAS  Google Scholar 

  28. Sreethawong T, Suzuki Y, Yoshikawa S (2005) Int J Hydrogen Energy 30:1053. doi:10.1016/j.ijhydene.2004.09.007

    Article  CAS  Google Scholar 

  29. Lin HY, Chen YF, Chen YW (2007) Int J Hydrogen Energy 32:86. doi:10.1016/j.ijhydene.2006.04.007

    Article  CAS  MathSciNet  Google Scholar 

  30. Deng XZ, Sun J, Yu SS, Xi JY, Zhu WT, Qiu XP (2008) Int J Hydrogen Energy 33:1008

    CAS  Google Scholar 

  31. Huang B, Li F, Chen G, Zhao BY, Hu KA (2004) Mater Res Bull 39:1359. doi:10.1016/j.materresbull.2003.11.009

    Article  Google Scholar 

  32. Zhao W, Ma WH, Chen CC, Zhao JC, Shuai ZG (2004) J Am Chem Soc 126:4782

    Article  PubMed  CAS  Google Scholar 

  33. Sarapatka TJ (1993) Chem Phys Lett 212:1

    Article  Google Scholar 

  34. Uhlenbrock S, Scharfschwerdt C, Neumann M, Illing G, Freund HJ (1992) J Phys Condens Matter 4:7973. doi:10.1088/0953-8984/4/40/009

    Article  ADS  CAS  Google Scholar 

  35. Biju V (2007) Mater Res Bull 42:791. doi:10.1016/j.materresbull.2006.10.009

    Article  CAS  Google Scholar 

  36. Anandana S, Vinu A, Sheeja Lovely KLP, Gokulakrishnan N, Srinivasu P, Mori T, Murugesan V, Sivamurugan V, Ariga K (2007) J Mol Catal Chem 266:149. doi:10.1016/j.molcata.2006.11.008

    Article  Google Scholar 

  37. Dzhurinsk BFII, Gati D, Sergushin NP, Nefedov VI, Salyn YV (1975) Russ J Inorg Chem 20:2307

    Google Scholar 

  38. Stypula B, Stoch J (1994) Corros Sci 36:2159. doi:10.1016/0010-938X(94)90014-0

    Article  CAS  Google Scholar 

  39. Chen SF, Zhang SJ, Liu W, Zhao W (2008) J Hazard Mater 115:320

    Google Scholar 

  40. Mabcia F, Fierro G, Ingo GM (1989) Corrosion 45:814

    Google Scholar 

  41. Oku M, Tokuda H, Hirokawa K (1991) J Electron Spectrosc Relat Phenom 53:201. doi:10.1016/0368-2048(91)85039-V

    Article  CAS  Google Scholar 

  42. Chen SF, Chen L (2006) Mater Chem Phys 98:116. doi:10.1016/j.matchemphys.2005.08.073

    Article  CAS  Google Scholar 

  43. Klug HP, Alexander LE (1997) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York

    Google Scholar 

  44. Gao B, Ma Y, Cao Y, Yang W, Yao J (2006) J Phys Chem B 110:14391. doi:10.1021/jp0624606

    Article  PubMed  CAS  Google Scholar 

  45. Cai TJ, Yue M, Wang XW, Deng Q (2007) Chin J Catal 28:10. doi:10.1016/S1872-2067(07)60007-2

    Article  CAS  Google Scholar 

  46. Tang JW, Zou ZG, Ye JH (2003) J Phys Chem B 107:14265. doi:10.1021/jp0359891

    Article  CAS  Google Scholar 

  47. Seungmo K, Kyoungchul S, Kandasamy P, Chongmu L (2004) Phys Status Solidi(b) 12:2830

    Google Scholar 

  48. Long MC, Cai WM, Cai J, Zhou BX, Chai XY, Wu YH (2006) J Phys Chem B 110:20211. doi:10.1021/jp063441z

    Article  PubMed  CAS  Google Scholar 

  49. Liu SX, Liu H (2005) Fundamental and application of photocatalysis and electro-photocatalysis. Chem Ind Press, Beijing

    Google Scholar 

  50. Chen SF, Cao GY (2005) Chem Phys Lett 413:404. doi:10.1016/j.cplett.2005.08.038

    Article  ADS  Google Scholar 

  51. Yu JC, Yu J, Zhao J (2002) Appl Catal B Environ 36:31

    Article  CAS  Google Scholar 

  52. Dvoranova D, Brezova V, Mazur M, Malati MA (2002) Appl Catal B: Environ 37:91

    Article  CAS  Google Scholar 

  53. Chen SF, Chen L (2005) Powder Technol 160:198

    Article  CAS  Google Scholar 

  54. Lin XP, Xing JC, Wang WD, Shan ZC, Xu FF, Huang FQ (2007) J Phys Chem C 111:18288. doi:10.1021/jp073955d

    Article  CAS  Google Scholar 

  55. Bandara J, Weerasinghe H (2005) Sol Energy Mater Sol Cells 85:385. doi:10.1016/j.solmat.2004.05.010

    Article  CAS  Google Scholar 

  56. Ohtani B, Ogawa Y, Nishimoto SI (1997) J Phys Chem B 101:3746. doi:10.1021/jp962702+

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (No. 20673042), the Natural Science Foundation of Anhui Province (Contract No. 070415211), the Key Project of Science and Technology Research of Ministry of Education of China (208062) and the Natural Science Foundation of Anhui Provincial Education Committee (KJ2007A015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Shifu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shifu, C., Wei, Z., Wei, L. et al. Preparation, characterization and activity evaluation of p–n junction photocatalyst p-NiO/n-ZnO. J Sol-Gel Sci Technol 50, 387–396 (2009). https://doi.org/10.1007/s10971-009-1908-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-1908-3

Keywords

Navigation