Skip to main content

Advertisement

Log in

A spectroscopic study of calcium aluminate gels obtained from aluminium sec-butoxide chelated with ethyl acetoacetate in various ratios

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Calcium aluminate (CaAl2O4, CA) powders were prepared by sol–gel technique at low sintering temperatures. Aluminium-sec-butoxide (Al(OsBu)3, Asb) and calcium nitrate tetrahydrate (Ca(NO3)2 × 4H2O) were used as starting materials. Ethyl acetoacetate (C6H10O3, Eaa) was used as a chelating agent in order to control the rate of hydrolysis of Al(OsBu)3. Three gels with Eaa/Asb molar ratios of 1/1, 3/2 and 2/1 were prepared. The dried gels and thermally treated samples were characterized by means of Fourier Transform Infrared spectroscopy (FTIR), 1H, 13C Nuclear Magnetic Resonance (NMR) spectroscopy, solid-state 27Al Magic Angle Spinning (MAS) NMR, 3Q MAS NMR spectroscopy, and X-Ray Diffraction (XRD). From the results obtained, the effect of modification of the starting Asb on the hydrolysis process, hydrolyzed gel structure and crystallization behavior is discussed. It has been established that Eaa reacts completely with Asb forming chelate. Various chelate units are formed including trichelated, Al(Eaa)3 units. Spontaneous gellation has been observed in the sols slowly hydrolyzed by exposing to air moisture. The reactivity towards hydrolysis of chelated alkoxide depends on the number of chelating ligands bonded to aluminium. Sec-butoxy groups were primarily hydrolyzed; ethyl acetoacetate groups in less chelated units are much less susceptible to hydrolysis, while trichelated units were not hydrolyzed. Thus, in hydrolyzed gels a partially chelated oligomers and trichelated Al(Eaa)3 units exist. The crystal phase, not described previously, related to Al(Eaa)3 chelate crystallizes in the gels with higher Eaa/Asb ratio. Hydrolysis leads to formation of three kinds of Al coordination sites: six coordinated Al(Eaa)3, and five and six coordinated Al atoms in oligomers. The Eaa/Asb ratio strongly influences the relative ratios between the various coordination states of aluminium atom. After thermal treatment of the gels at 1,000 °C for 2 h, CA was obtained along with minor CaAl4O7, (CA2) and Ca12Al14O33(C12A7) compounds. Thermal treatment at higher temperature increases the amount of CA and decreases the amount of minor components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pati RK, Panda AB, Pramanik P (2002) J Mater Synth Process 10:157. doi:10.1023/A:1023013913102

    Article  CAS  Google Scholar 

  2. Douy A, Gervais M (2000) J Am Ceram Soc 83:70. doi:10.1111/j.1151-2916.2000.tb01150.x

    Article  CAS  Google Scholar 

  3. Goktas AA, Weinberg MC (1991) J Am Ceram Soc 74:1066. doi:10.1111/j.1151-2916.1991.tb04344.x

    Article  CAS  Google Scholar 

  4. Loof J, Svahn F, Jarmar T, Engqvist H, Pameijer CH (2008) Dent Mater 24:653. doi:10.1016/j.dental.2007.06.028

    Article  PubMed  Google Scholar 

  5. Stephan D, Wilhelm P (2004) Z Anorg Allg Chem 630:1477. doi:10.1002/zaac.200400090

    Article  CAS  Google Scholar 

  6. Gulgun MA, Popoola OO, Kriven WM (1994) J Am Ceram Soc 77:531. doi:10.1111/j.1151-2916.1994.tb07026.x

    Article  CAS  Google Scholar 

  7. Yi HC, Guigne JY, Moore JJ, Schowengerdt FD, Robinson LA, Manerbino AR (2002) J Mater Sci 37:4537. doi:10.1023/A:1020671626797

    Article  CAS  Google Scholar 

  8. Uberoi M, Risbud SH (1990) J Am Ceram Soc 73:1768. doi:10.1111/j.1151-2916.1990.tb09829.x

    Article  CAS  Google Scholar 

  9. Kerns L, Weinberg MC, Myers S, Assink R (1998) J Non-Cryst Solids 232–234:86. doi:10.1016/S0022-3093(98)00376-7

    Article  Google Scholar 

  10. Aitasalo T, Holsa J, Jungner H, Lastusaari M, Niittykoski J (2002) Mater Sci 20:15

    CAS  Google Scholar 

  11. Haridas MM, Goyal N, Bellare JR (1998) Ceram Int 24:415. doi:10.1016/S0272-8842(97)00011-4

    Article  CAS  Google Scholar 

  12. Bonhomme-Coury L, Babonneau F, Livage J (1994) J Sol-Gel Sci Tech 3:157

    Article  CAS  Google Scholar 

  13. Tadanaga K, Iwami T, Tohge N, Minami T (1994) J Sol-Gel Sci Tech 3:5

    Article  CAS  Google Scholar 

  14. Nass R, Schmidt H (1990) J Non-Cryst Solids 121:329. doi:10.1016/0022-3093(90)90153-D

    Article  ADS  CAS  Google Scholar 

  15. Babonneau F, Coury L, Livage J (1990) J Non-Cryst Solids 121:153. doi:10.1016/0022-3093(90)90122-3

    Article  ADS  CAS  Google Scholar 

  16. Mehrotra RC (1988) Pure Appl Chem 60:1349. doi:10.1351/pac198860081349

    Article  CAS  Google Scholar 

  17. Yamada N, Yoshinaga I, Katayama S (2000) J Sol-Gel Sci Tech 17:123

    Article  CAS  Google Scholar 

  18. Le Bihan L, Dumeignil F, Payen E (2002) J Sol-Gel Sci Tech 24:113

    Article  Google Scholar 

  19. Hoebbel D, Reinert T, Schmidt H, Arpac E (1997) J Sol-Gel Sci Tech 10:115

    Article  CAS  Google Scholar 

  20. Uchihashi H, Tohge N, Minami T (1989) Ceram Soc Jpn Int Ed 97:398

    Google Scholar 

  21. Yogo T, Iwahara LJ (1992) J Mater Sci 27:1499. doi:10.1007/BF00542910

    Article  CAS  Google Scholar 

  22. Mizushima Y, Hori M (1992) Appl Catal A 88:137. doi:10.1016/0926-860X(92)80211-T

    Article  CAS  Google Scholar 

  23. Heinrich T, Raether F, Tappert W, Fricke J (1992) J Non-Cryst Solids 145:55. doi:10.1016/S0022-3093(05)80429-6

    Article  ADS  CAS  Google Scholar 

  24. Heinrich T, Raether F, Sprmann O, Fricke J (1991) J Appl Cryst 24:788. doi:10.1107/S0021889890013759

    Article  CAS  Google Scholar 

  25. Bonhomme-Coury L, Babonneau F, Livage J (1993) Chem Mater 5:323. doi:10.1021/cm00027a015

    Article  CAS  Google Scholar 

  26. Amoureux JP, Fernandez C, Steuernagel S (1996) J Magn Reson A 123:116. doi:10.1006/jmra.1996.0221

    Article  PubMed  CAS  Google Scholar 

  27. Silverstein RM, Webster FX (1998) Spectrometric indetification of organic compounds, 6th edn. Willey, NY, USA

    Google Scholar 

  28. Jing C, Zhao X, Zhang Y (2007) Mater Res Bull 42:600. doi:10.1016/j.materresbull.2006.08.005

    Article  CAS  Google Scholar 

  29. Lafuma A, Chodorowski-Kimmes S, Quinn FX, Sanchez C (2003) Eur J Inorg Chem 2003:331. doi:10.1002/ejic.200390045

    Article  Google Scholar 

  30. Krishna Priya G, Padmaja P, Warrier KGK, Damodaran AD, Aruldhas G (1997) J Mater Sci Lett 16:1548. doi:10.1023/A:1018568418302

    Article  Google Scholar 

  31. http://webbook.nist.gov

  32. Kriz O, Casensky B, Lycka A, Fusek J, Hermanek S (1984) J Magn Reson 60:375

    CAS  Google Scholar 

  33. Wengrovius JH, Garbauskas MF, Williams EA, Going RC, Donahue PE, Smith JF (1986) J Am Chem Soc 108:982. doi:10.1021/ja00265a024

    Article  CAS  Google Scholar 

  34. Pierre A, Begag R, Pajonk G (1999) J Mater Sci 34:4937. doi:10.1023/A:1004703504103

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial support of the Ministry of Science, Education and Sports of Republic of Croatia within the framework of the project No. 125-1252970-2981 “Ceramic nanocomposites obtained by sol–gel process” is gratefully acknowledged. The authors would like to thank Dr. E. Mestrovic and I. Bratos, Pliva d.d., Zagreb, Croatia for performing an MS measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kurajica.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurajica, S., Mali, G., Gazivoda, T. et al. A spectroscopic study of calcium aluminate gels obtained from aluminium sec-butoxide chelated with ethyl acetoacetate in various ratios. J Sol-Gel Sci Technol 50, 58–68 (2009). https://doi.org/10.1007/s10971-009-1905-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-1905-6

Keywords

Navigation