Skip to main content
Log in

Wet sol–gel silica matrices as delivery devices for phenytoin

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Wet sol–gel silica matrices produced under different hydrolysis conditions were used as delivery devices to the active principle of an antiepileptic drug (phenytoin sodium), encapsulated during the condensation stage. Post-incorporation into dry silica powder was an alternative loading procedure. It was proven by infrared spectroscopy that neither the silica network nor the drug loose integrity by encapsulation. The kinetics of in vitro drug release was studied at 37 °C, to water and to artificial cerebrospinal fluid (ACSF). Emphasis has been given to the release to ACSF under dynamic conditions (with fluid renovation, emulating what occurs in the brain). Different delivery regimes were identified and correlated with the loading method and the matrix structure. Matrices with lower total porosity and smaller average pore size proved to be better for a long term release. Renovation of ACSF is relevant to assure a constant concentration of phenytoin in the vicinity of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yokoyama M, Okano T (1996) Adv Drug Delivery Rev 21:77

    Article  CAS  Google Scholar 

  2. Ulrich KE, Cannizzaro SM, Langer RS et al (1999) Chem Rev 99:3181. doi:10.1021/cr940351u

    Article  CAS  Google Scholar 

  3. Rösler A, Vandermuelen GWM (2001) Adv Drug Delivery Rev 53:95

    Article  Google Scholar 

  4. Kataoka K, Harada A, Nagasaki Y (2001) Adv Drug Delivery Rev 47:113

    Article  CAS  Google Scholar 

  5. Guo X, Szoka F (2003) Acc Chem Res 36:335

    Article  PubMed  CAS  Google Scholar 

  6. Yang Q, Wang SC, Fan PW et al (2005) Chem Mater 17:5999

    Article  CAS  Google Scholar 

  7. Song S-W, Hidajat K, Kawi S (2005) Langmuir 21:9568. doi:10.1021/la051167e

    Article  PubMed  CAS  Google Scholar 

  8. Qu FY, Zhu GS, Lin HM et al (2006) Eur J Inorg Chem 2006:3943. doi:10.1002/ejic.200501035

    Article  CAS  Google Scholar 

  9. Yang H, Kao WJ (2006) Pharm Res 23:205. doi:10.1007/s11095-005-8417-z

    Article  PubMed  CAS  Google Scholar 

  10. Zan J, Chen H, Jiang G et al (2006) J Appl Polym Sci 101:1892. doi:10.1002/app.23613

    Article  CAS  Google Scholar 

  11. Sandolo C, Coviello T, Matricardi P et al (2007) Eur Biophys J 36:693

    Article  PubMed  CAS  Google Scholar 

  12. Jiang Z, You Y, Deng X et al (2007) Polymer 48:4786

    Article  CAS  Google Scholar 

  13. Determan MD, Cox JP, Mallapragada SK (2007) J Biomed Mater Res A 81:326

    PubMed  Google Scholar 

  14. Suzuki A, Tanaka T (1990) Nature 346:345

    Article  ADS  CAS  Google Scholar 

  15. Jones CD, Lyon LA (2000) Macromolecules 33:8301

    Article  CAS  ADS  Google Scholar 

  16. Kim HJ, Lee JH, Lee M (2005) Angew Chem Int Ed 44:5810

    Article  CAS  Google Scholar 

  17. Chen S, Singh J (2005) Pharm Dev Technol 10:319

    Article  PubMed  CAS  Google Scholar 

  18. Vallet-Regí M, Rámila A, del Real RP et al (2001) Chem Mater 13:308

    Article  CAS  Google Scholar 

  19. Charnay C, Begu S, Tourne-Peteilh C et al (2004) Eur J Pharm Biopharm 57:533

    Article  PubMed  CAS  Google Scholar 

  20. Zeng W, Qian XF, Zhang YB et al (2005) Mater Res Bull 40:766

    Article  CAS  Google Scholar 

  21. Izquierdo-Barba I, Martinez A, Doadrio AL et al (2005) Eur J Pharm Sci 26:365

    Article  PubMed  CAS  Google Scholar 

  22. Fagundes LB, Sousa TGF, Sousa A et al (2006) J Non-Cryst Solids 352:3496

    Article  ADS  CAS  Google Scholar 

  23. Barbé C, Bartlett J, Kong L et al (2004) Adv Mater 16:1959

    Article  CAS  Google Scholar 

  24. Vallet-Regí M, Balas F, Colilla M et al (2007) Solid State Sciences 9:768

    Article  CAS  ADS  Google Scholar 

  25. Zhu Y, Shi J, Chen H et al (2005) Mic Mes Mater 84:218

    Article  CAS  Google Scholar 

  26. Zhu Y, Shi J, Shen W et al (2005) Nanotechnology 16:2633

    Article  ADS  CAS  Google Scholar 

  27. Shula R, Falaize S, Lee MH et al (2002) Biomaterials 23:3113

    Article  Google Scholar 

  28. Kortesuo P, Ahola M, Kangas M et al (2001) Int J Pharm 221:107

    Article  PubMed  CAS  Google Scholar 

  29. Jiang Y, Wu Z, You L et al (2006) Colloids Surf B Biointerfaces 49:55

    Article  PubMed  CAS  Google Scholar 

  30. Ahola M, Kortesuo P, Kangasniemi I et al (2000) Int J Pharm 195:219

    Article  PubMed  CAS  Google Scholar 

  31. Kortesuo P, Ahola M, Karlsson S et al (2000) Biomaterials 21:193

    Article  PubMed  CAS  Google Scholar 

  32. Radin S, Ducheyne P, Kamplain T et al (2001) J Biomed Mater Res 57:313

    Article  PubMed  CAS  Google Scholar 

  33. Aughenbaugh W, Radin S, Ducheyne P (2001) J Biomed Mater Res 57:321

    Article  PubMed  CAS  Google Scholar 

  34. Hwang YJ, Oh C, Oh SG (2005) J Control Release 106:339

    Article  PubMed  CAS  Google Scholar 

  35. Falaize S, Radin S, Ducheyne P (1999) J Am Ceram Soc 82:969

    Article  CAS  Google Scholar 

  36. Livage J (1997) Curr Opin Solid State Mater Sci 2:132

    Article  CAS  Google Scholar 

  37. Fidalgo A, Ilharco LM (2004) Chem Eur J 10:392

    Article  CAS  Google Scholar 

  38. Meixner DL, Dyer PN (1999) J Sol–Gel Sci Technol 14:223

    Article  CAS  Google Scholar 

  39. Viitala R, Jokinen M, Maunu SL et al (2005) J Non-Cryst Solids 351:3225

    Article  ADS  CAS  Google Scholar 

  40. Viitala R, Jokinen M, Tuusa S et al (2005) J Sol–Gel Sci Technol 36:147

    Article  CAS  Google Scholar 

  41. Siepmann J, Göpferich A (2001) Adv Drug Del Rev 48:229

    Article  CAS  Google Scholar 

  42. Göpfrich A (1997) Biomaterials 18:397

    Article  Google Scholar 

  43. Göpferich A, Langer R (1995) J Control Release 33:55

    Article  Google Scholar 

  44. Lee JW, Gardella JA, Hicks W et al (2003) Pharm Res 20:149

    Article  PubMed  CAS  Google Scholar 

  45. Fidalgo A, Rosa ME, Ilharco LM (2003) Chem Mater 15:2186

    Article  CAS  Google Scholar 

  46. Kroeg AF, Kjeldsberg CR (1991) In: Henry JB (ed) Clinical diagnosis and management by laboratory methods. Saunders, Toronto

    Google Scholar 

  47. Brown PD, Speake T, Davies SL et al (2004) In: Zheng W, Chodobski A (eds) The blood cerebrospinal fluid barrier. CRC Press, Boca Raton

    Google Scholar 

  48. Fidalgo A, Ilharco LM (2005) Mic Mes Mater 84:229

    Article  CAS  Google Scholar 

  49. Trewyn BG, Whitman CM, Lin VSY (2004) Nano Lett 4:2139

    Article  CAS  ADS  Google Scholar 

  50. Higushi T (1961) J Pharm Sci 50:874

    Article  Google Scholar 

  51. Talukdar MM, Kinget R (1997) Int J Pharm 151:99

    Article  CAS  Google Scholar 

  52. Peppas NA (1985) Pharm Acta Helv 60:110

    PubMed  CAS  Google Scholar 

  53. Peppas NA, Korsmeyer RW (1986) In: Peppas NA (ed) Hydrogels in medicine and pharmacy, vol 3. CRC Press, Boca Raton

    Google Scholar 

  54. Siepmann J, Peppas NA (2001) Adv Drug Delivery Rev 48:139

    Article  CAS  Google Scholar 

  55. Ritger PL, Peppas NA (1987) J Control Release 5:23

    Article  CAS  Google Scholar 

  56. Ritger PL, Peppas NA (1987) J Control Release 5:37

    Article  CAS  Google Scholar 

  57. Andrade JS Jr, Street DA, Shibusa Y et al (1997) Phys Rev E 55:772

    Article  ADS  CAS  Google Scholar 

  58. Havlin S, Bundle A (1996) In: Bundle A, Havlin S (eds) Fractals and disordered systems, 2nd edn. Springer, Heidelberg

    Google Scholar 

  59. Domingo JL (2006) J Alzheimers Dis 10:331

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação para a Ciência e a Tecnologia (FCT), Project POCI/QUI/60918/2004. Alexandra Fidalgo acknowledges Post-doc grant SFRH/BPD/20234/2004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura M. Ilharco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fidalgo, A., Lopez, T.M. & Ilharco, L.M. Wet sol–gel silica matrices as delivery devices for phenytoin. J Sol-Gel Sci Technol 49, 320–328 (2009). https://doi.org/10.1007/s10971-008-1880-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1880-3

Keywords

Navigation