Skip to main content
Log in

A novel route for the synthesis of nanocomposite tungsten carbide–cobalt using a biopolymer as a carbon source

  • Fast Track Communication
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A new synthetic route to nanoparticulate tungsten carbide–cobalt is demonstrated, using a sol–gel approach in an aqueous solution containing a biopolymer. On calcination, the biopolymer was found to act both as a source of carbon and also as an anti-sintering, structure-directing template. By keeping the tungsten carbide phase nanoparticulate, the hardness was found to be commensurate with that seen in more traditional ‘heat and beat’ syntheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goren-Muginstein GR, Berger S, Rosen A (1998) NanoStruct Mater 10:795. doi:10.1016/S0965-9773(98)00116-0

    Article  CAS  Google Scholar 

  2. Zhu YT, Manthiram A (1996) Compos Part B 27B:407. doi:10.1016/1359-8368(96)00004-2

    Article  CAS  Google Scholar 

  3. Santhanam TS (1998) Met Powder Rep 53:32

    Google Scholar 

  4. Santhanam AT, Tierney P, Hunt JL (1990) Metals handbook, 10th edn. ASM Int, Ohio

    Google Scholar 

  5. Zawra MF (2007) Ceram Int 33:155. doi:10.1016/j.ceramint.2005.09.010

    Article  CAS  Google Scholar 

  6. Ravichandran KS (1994) Acta Metall Mater 42:143. doi:10.1016/0956-7151(94)90057-4

    Article  CAS  Google Scholar 

  7. Chow G, Ovid’ko IA, Tsakalakos T (2000) Nanostructured films and coatings, 3rd edn. Kluwer Academic Publishers, Boston Chapter X:113

    Google Scholar 

  8. Fraenkel G, Rudall GKM (1947) Proc R Soc Lond B Biol Sci 874:111

    Article  ADS  Google Scholar 

  9. Ogawa K, Oka T (1993) Chem Mater 5:726. doi:10.1021/cm00029a026

    Article  CAS  Google Scholar 

  10. Bengisu M, Yilmaz E (2002) Carbohydr Polym 50:165. doi:10.1016/S0144-8617(02)00018-8

    Article  CAS  Google Scholar 

  11. Oliver WC, Pharr GM (1992) J Mater Res 7:1564. doi:10.1557/JMR.1992.1564

    Article  ADS  CAS  Google Scholar 

  12. He J, Schoenung JM (2002) Surf Coat Tech 157:72. doi:10.1016/S0257-8972(02)00141-X

    Article  CAS  Google Scholar 

  13. Kear BH, Strutt PR (1995) Nav Res Rev 4:4

    Google Scholar 

  14. Kear BK, McCandlish LE (1994) Nanostructured Mater 3:19. doi:10.1016/0965-9773(93)90059-K

    Article  Google Scholar 

  15. He J, Ice M, Lavernia EJ (2000) Metall Mater Trans A 31A:541. doi:10.1007/s11661-000-0289-6

    Article  CAS  Google Scholar 

  16. Ban ZG, Shaw LL (2002) J Mater Sci 37:3397. doi:10.1023/A:1016553426227

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon R. Hall.

Additional information

This research was supported by the Royal Society through their University Research Fellowship scheme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holgate, M.W.R., Schoberl, T. & Hall, S.R. A novel route for the synthesis of nanocomposite tungsten carbide–cobalt using a biopolymer as a carbon source. J Sol-Gel Sci Technol 49, 145–149 (2009). https://doi.org/10.1007/s10971-008-1869-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1869-y

Keywords

Navigation