Skip to main content
Log in

Surface chemical bonding states and ferroelectricity of Ce-doped BiFeO3 thin films prepared by sol–gel process

  • Fast Track Communications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Bi1−x Ce x FeO3 (x = 0, 0.05, 0.1, 0.15 and 0.20) (BCFO) thin films were deposited on Pt/TiN/Si3N4/Si substrates by sol–gel technique. Crystal structures, surface chemical compositions and bonding states of BCFO films were investigated by X-ray diffraction and X-ray photoelectron spectroscopy (XPS), respectively. Compared to BiFeO3 (BFO) counterparts, the fitted XPS narrow-scan spectra of Bi 4f7/2, Bi 4f5/2, Fe 2p3/2, Fe 2p1/2 and O 1s peaks for Bi0.8Ce0.2FeO3 film shift towards higher binding energy regions by amounts of 0.33, 0.29, 0.43, 0.58 and 0.49 eV, respectively. Dielectric constants and loss tangents of the BCFO (x = 0, 0.1 and 0.2) film capacitors are 159, 131, 116, 0.048, 0.041 and 0.035 at 1 MHz, respectively. Bi0.8Ce0.2FeO3 film has a higher remnant polarization (P r = 2.04 μC/cm2) than that of the BFO (P r = 1.08 μC/cm2) at 388 kV/cm. Leakage current density of the Bi0.8Ce0.2FeO3 capacitor is 1.47 × 10−4 A/cm2 at 388 kV/cm, which is about two orders of magnitude lower than that of the BFO counterpart. Furthermore, Ce cations are feasibly substituted for Bi3+ in the Bi0.8Ce0.2FeO3 matrix, possibly resulting in the enhanced ferroelectric properties for the decreased grain sizes and the reduced oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Zhao T, Scholl A, Zavaliche F, Lee K, Barry M, Doran A, Cruz MP, Chu YH, Ederer C, Spaldin NA, Das RR, Kim DM, Baek SH, Eom CB, Ramesh R (2006) Nat Mater 5:823

    Article  CAS  Google Scholar 

  2. Chu YH, Zhan Q, Yang CH, Cruz MP, Martin LW, Zhao T, Yu P, Ramesh R, Joseph PT, Lin IN, Tian W, Schlom DG (2008) Appl Phys Lett 92:102909

    Article  Google Scholar 

  3. Kumar A, Murari NM, Katiyar RS (2008) Appl Phys Lett 92:152907

    Article  Google Scholar 

  4. Shannigrahi SR, Huang A, Chandrasekhar N, Tripathy D, Adeyeye AO (2007) Appl Phys Lett 90:022901

    Article  Google Scholar 

  5. Takahashi K, Kida N, Tonouchi M (2006) Phys Rev Lett 96:117402

    Article  Google Scholar 

  6. Gao F, Chen XY, Yin KB, Dong S, Ren ZF, Yuan F, Yu T, Zou ZG (2007) Adv Mater 19:2889

    Article  CAS  Google Scholar 

  7. Simões AZ, Cavalcante LS, Riccardi CS, Varela JA, Longo E (2008) Curr Appl Phys. doi:10.1016/j.cap.2008.05.001

  8. Ederer C, Spaldin NA (2005) Phys Rev B 71:060401

    Article  Google Scholar 

  9. Wang Y, Nan CW (2008) J Appl Phys 103:024103

    Article  Google Scholar 

  10. Hu GD, Cheng X, Wu WB, Yang CH (2007) Appl Phys Lett 91:232909

    Article  Google Scholar 

  11. Wang Y, Nan CW (2006) Appl Phys Lett 89:052903

    Article  Google Scholar 

  12. Singh SK, Sato K, Maruyama K, Ishiwara H (2006) Jpn J Appl Phys Part 2 45:L1087

    Article  CAS  Google Scholar 

  13. Lee CC, Wu JM (2007) Electrochem Solid State 10:G58

    Article  CAS  Google Scholar 

  14. Kartopu G, Lahmar A, Habouti S, Solterbeck CL, Elouadi B, Souni ME (2008) Appl Phys Lett 92:151910

    Article  Google Scholar 

  15. Cheng ZX, Wang XL, Dou SX, Kimura H, Ozawa K (2008) Phys Rev B 77:092101

    Article  Google Scholar 

  16. Zhang BS, Quan ZC, Zhang TJ, Guo T, Mo SB (2007) J Appl Phys 101:014107

    Article  Google Scholar 

  17. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Minnesota

  18. Wang YP, Zhou L, Zhang MF, Chen XY, Liu JM, Liu ZG (2004) Appl Phys Lett 84:1731

    Article  CAS  Google Scholar 

  19. Brinkman K, Iijima T, Nishida K, Katoda T, Funakubo H (2007) Ferroelectrics 357:599

    Article  Google Scholar 

  20. Brinkman K, Iijima T, Takamura H (2007) Jpn J Appl Phys Part 2 46:93

    Article  Google Scholar 

  21. Schaffer JP, Saxena A, Antolovich SD, Sanders TH, Warner JSB (1999) The science and design of engineering materials, 2nd edn. McGraw-Hill Companies, New York

  22. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Science 299:1719

    Article  CAS  Google Scholar 

  23. Gao YH, Shen H, Ma JH, Xue JQ, Sun JL, Meng XJ, Chu JH, Wang PN (2007) J Appl Phys 102:064106

    Article  Google Scholar 

  24. Askeland DR (1994) The science and engineering of materials, 3rd edn. PWS Publishing Company, Boston

  25. Wang Y, Jiang QH, He HC, Nan CW (2006) Appl Phys Lett 88:142503

    Article  Google Scholar 

  26. Talik E, Guzik A (2003) Phys Stat Sol (a) 196:332

    Article  CAS  Google Scholar 

  27. Qi XD, Dho J, Tomov R, Blamire MG, MacManus-Driscoll JL (2005) Appl Phys Lett 86:062903

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from Hi-tech Plan of Ministry of Science and Technology (Grant No. 2006AA03Z347) and National Nature Science Foundation of People’s Republic of China (Grant No. 50125309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingzhong Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quan, Z., Hu, H., Xu, S. et al. Surface chemical bonding states and ferroelectricity of Ce-doped BiFeO3 thin films prepared by sol–gel process. J Sol-Gel Sci Technol 48, 261–266 (2008). https://doi.org/10.1007/s10971-008-1825-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1825-x

Keywords

Navigation