Skip to main content

Formation of functional phosphosilicate gels from phytic acid and tetraethyl orthosilicate

Abstract

Phosphosilicate gels with high phosphorus content (P mol% > Si mol%) have been prepared using phytic acid as the phosphorus precursor, with tetraethyl orthosilicate (TEOS). It is shown that the structure of phytic acid is maintained in both the sols and those gels dried at a low temperature (i.e. ≤120 °C). Solid state 29Si and 31P NMR suggest that the gel network is primarily based on tetrahedral silicon and that phosphorus is not chemically incorporated into the silicate network at this point. X-ray diffraction shows the gel to be amorphous at low temperatures. After heat treatment at higher temperatures (i.e. up to 450 °C), P–O–Si linkages are formed and the silicon coordination changes from tetrahedral to octahedral. At the same time, the gel crystallizes. Even after this partial calcination, 31P NMR shows that a large fraction of phytic acid remains in the network. The function of phytic acid as chelating agent is also maintained in the gels dried at 120 °C such that its ability to absorb Ca2+ from aqueous solution is preserved.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Nogami M, Daiko Y, Goto Y, Usui Y, Kasuga T (2003) J Sol-Gel Sci Technol 26:1041

    Article  CAS  Google Scholar 

  2. 2.

    Daiko Y, Kasuga T, Nogami M (2002) Chem Mater 14:4624

    Article  CAS  Google Scholar 

  3. 3.

    Nogami M, Miyamura K, Abe Y (1997) J Electrochem Soc 144:2175

    Article  CAS  Google Scholar 

  4. 4.

    D’Apuzzo M, Aronne A, Esposito S, Pernice P (2000) J Sol-Gel Sci Technol 17:247

    Article  CAS  Google Scholar 

  5. 5.

    Aparicio M, Klein LC (2003) J Sol-Gel Sci Technol 28:199

    Article  CAS  Google Scholar 

  6. 6.

    Matsuda A, Kanzaki T, Tadanaga K, Tatsumisago M, Minami T (2002) Solid State ionics 154–155:687

    Article  Google Scholar 

  7. 7.

    Hench LL (1991) J Am Ceram Soc 74:1487

    Article  CAS  Google Scholar 

  8. 8.

    Saravanapavan P, Jones JR, Pryce RS, Hench LL (2003) J Biomed Mater Res, Part A 66A:110

    Article  CAS  Google Scholar 

  9. 9.

    Roman J, Padilla S, Vallet-Regi M (2003) Chem Mater 15:798

    Article  CAS  Google Scholar 

  10. 10.

    Cerruti M, Magnacca G, Bolis V, Morterra C (2003) J Mater Chem 13:1279

    Article  CAS  Google Scholar 

  11. 11.

    Krawietz TR, Lin P, Lotterhos KE, Torres PD, Barich DH, Clearfield A, Haw JF (1998) J Am Chem Soc 120:8502

    Article  CAS  Google Scholar 

  12. 12.

    Fougret CM, Holderich WF (2001) Appl Catal, A 207:295

    Article  CAS  Google Scholar 

  13. 13.

    Tian F, Pan L, Wu LX, Wu F (1988) J Non-Cryst Solids 104:129

    Article  CAS  Google Scholar 

  14. 14.

    Woignier T, Phalippou J, Zarzycki J (1984) J Non-Cryst Solids 63:117

    Article  CAS  Google Scholar 

  15. 15.

    Szu SP, Klein LC, Greenblatt M (1992) J Non-Cryst Solids 143:21

    Article  CAS  Google Scholar 

  16. 16.

    Livage J, Barboux P, Vanderborre MT (1992) J Non-Cryst Solids 147:18

    Article  Google Scholar 

  17. 17.

    Fernandez-Lorenzo C, Esquivias L, Barboux P, Maquet J, Taulelle F (1994) J Non-Cryst Solids 176:189

    Article  CAS  Google Scholar 

  18. 18.

    Wang L, Samuels WD, Exarhos GJ, Lee BI, Cao Z (1998) J Mater Chem 8:165

    Article  CAS  Google Scholar 

  19. 19.

    Vallet-Regi M, Salinas AJ, Roman J, Gil M (1999) J Mater Chem 9:515

    Article  CAS  Google Scholar 

  20. 20.

    Clayden NJ, Esposito S, Pernice P, Aronne A (2001) J Mater Chem 11:936

    Article  CAS  Google Scholar 

  21. 21.

    Carta D, Pickup DM, Knowles JC, Smith ME, Newport RJ (2005) J Mater Chem 15:2134

    Article  CAS  Google Scholar 

  22. 22.

    Aronne A, Turco M, Bagnasco G, Pernice P, Di Serio M, Clayden NJ, Marenna E, Fanelli E (2005) Chem Mater 17:2081

    Article  CAS  Google Scholar 

  23. 23.

    Pickup DM, Guerry P, Moss RM, Knowles JC, Smith ME, Newport RJ (2007) J Mater Chem 17:4777

    Article  CAS  Google Scholar 

  24. 24.

    Munoz JA, Valiente M (2003) Anal Chem 75:6374

    Article  CAS  Google Scholar 

  25. 25.

    Xu A, Yu Q, Dong W, Antonietti M, Colfen H (2005) Adv Mater 17:2217

    Article  CAS  Google Scholar 

  26. 26.

    Aizenberg J, Lambert G, Addadi L, Weiner S (1996) Adv Mater 8:222

    Article  CAS  Google Scholar 

  27. 27.

    Addadi L, Raz S, Weiner S (2003) Adv Mater 15:959

    Article  CAS  Google Scholar 

  28. 28.

    Braga D (2003) Angew Chem Int Ed 42:5544

    Article  CAS  Google Scholar 

  29. 29.

    Politi Y, Arad T, Klein E, Weiner S, Addadi L (2004) Science 306:1161

    Article  CAS  Google Scholar 

  30. 30.

    Samba-Fouala C, Mossoyan J, Mossoyan-Deneux M, Benlian D, Chaneac C, Babonneau F (2000) J Materi chem 10:387

    Article  CAS  Google Scholar 

  31. 31.

    Ali AF, Mustarelli P, Magistris A (1998) Mater Res Bull 33:697

    Article  CAS  Google Scholar 

  32. 32.

    Clayden NJ, Aronne A, Esposito S, Pernice P (2004) J Non-Crystal Solids 345&346:601

    Article  CAS  Google Scholar 

  33. 33.

    Clayden NJ, Pernice P, Aronne A (2005) J Non-Crystal Solids 351:195

    Article  CAS  Google Scholar 

  34. 34.

    Weeding TL, de Jong BHWS, Weeman WS, Aitken BG (1985) Nature 318:352

    Article  CAS  Google Scholar 

  35. 35.

    Stishov SM, Popova SV (1961) Geokhimiya 10:837

    Google Scholar 

  36. 36.

    Cao Z, Lee BI, Samuels WD, Wang LQ, Exarhos GJ (1998) J Mater Res 13:1553

    Article  CAS  Google Scholar 

  37. 37.

    Dupree R, Holland D, Mortuza MG (1987) Nature 328:416

    Article  CAS  Google Scholar 

  38. 38.

    Miyahe D, Takahashi M, Tokuda T, Yoko T, Uchino T (2005) Phys Rev B 71:172202

    Article  Google Scholar 

  39. 39.

    Coelho C, Azais T, Bonhomme-Coury L, Maquet J, Bonhomme C (2006) Comptes Rend Chim 9:472

    Article  CAS  Google Scholar 

  40. 40.

    Smith JW, Blackwell CS (1983) Nature 303:223

    Article  CAS  Google Scholar 

  41. 41.

    MacKenzie KJD, Smith ME (2002) Multinuclear Solid-State NMR of Inorganic Materials. Pergamon, Oxford

    Book  Google Scholar 

  42. 42.

    Laczka M, Ciecinska M (1994) J Sol-Gel Sci Technol 3:219

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the EPSRC for funding work on phosphate gels through the University of Kent, UCL Eastman Dental Institute and Warwick University (EP/C004671, EP/C004698, and EP/C515560). The NMR equipment at Warwick is partially supported by the EPSRC and the University of Warwick.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dong Qiu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Qiu, D., Guerry, P., Knowles, J.C. et al. Formation of functional phosphosilicate gels from phytic acid and tetraethyl orthosilicate. J Sol-Gel Sci Technol 48, 378–383 (2008). https://doi.org/10.1007/s10971-008-1818-9

Download citation

Keywords

  • Phosphosilicate
  • Sol–gel
  • 29Si and 31P NMR
  • Calcium absorbing