Skip to main content
Log in

Preparation and characterization of inorganic–organic hybrid proton exchange membranes based on phosphorylated PVA and PEG-grafted silica particles

  • Fast Track Communications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We reported proton-conducting membranes with novel microstructure based on partially phosphorylated poly(vinyl alcohol) (P-PVA) and polyethylene glycol (PEG) grafted silica (PEG-SiO2) particles. The PEG-SiO2 particles were synthesized through acid catalyzed hydrolysis and condensation reactions. The membranes were characterized for their mechanical, structural, morphological, and electrical properties by employing tensile test, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), impedance analyzer, respectively. In these membranes, P-PVA acts as the proton source and PEG act as the proton solvent. The PEG-riched phases in the hybrid membrane form continuous ionic conducting pathways and subsequently give high ionic conductivity. The results suggest that the obtained membrane shows good thermal stability, excellent mechanical property and high ionic conductivity, and the low-cost hybrid membrane can be a promising candidate for intermediate temperature fuel cell systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Sanchio T, Soler J, Pina MP (2007) J Power Sources 169:92

    Article  Google Scholar 

  2. Yamada M, Honma I (2004) Polymer 45:8349

    Article  CAS  Google Scholar 

  3. Aparicio M, Mosa J, Durán A (2006) J Sol–Gel Sci Technol 40:309

    Article  CAS  Google Scholar 

  4. Shao Y, Yin G, Wang Z, Gao Y (2007) J Power Sources 167:235

    Article  CAS  Google Scholar 

  5. Honma I, Nakajima H, Momura S (2002) Solid State Ionics 154–155:707

    Article  Google Scholar 

  6. Steininger S, Schuster M, Kreuer KD, Kaltbeitzel A, Bingöl B, Meyer WH, Schauff S, Brunklaus G, Maier J, Spiess HW (2007) Phys Chem Chem Phys 9:1764

    Article  CAS  Google Scholar 

  7. Wang F, Hickner M, Kim YS, Zawodzinski TA, McGrath JE (2002) J Membrane Sci 197:231

    Article  CAS  Google Scholar 

  8. Kreuer KD (2001) J Membrane Sci 185:29

    Article  CAS  Google Scholar 

  9. Xing P, Robertson GP, Guiver MD, Mikhailenko SD, Wang K, Kaliaguine S (2003) J Membrane Sci 229:95

    Article  Google Scholar 

  10. Kaliaguine S, Mikhailenko SD, Wang KP, Xing P, Robertson G, Guiver M (2003) Catal Today 82:213

    Article  CAS  Google Scholar 

  11. Akberti G, Casciola M, Massinelli L, Bauer B (2001) J Membrane Sci 185:73

    Article  Google Scholar 

  12. Ahmad MI, Zaidi SMJ, Rahman SU (2006) Desalination 193:387

    Article  CAS  Google Scholar 

  13. He R, Li Q, Jensen JO, Bjerrum NJ (2007) J Polym Sci A: Polym Chem 45:2989

    Article  CAS  Google Scholar 

  14. Bai Z, Price GE, Yoonessi M, Juhl SB, Durstock MF, Dang TD (2007) J Membrane Sci 305:69

    Article  CAS  Google Scholar 

  15. Zhang J, Tang Y, Song C, Zhang J (2007) J Power Sources 172:163

    Article  CAS  Google Scholar 

  16. Lobato J, Cañizares P, Rodrigo MA, Linares JJ, Aguilar JA (2007) J Membrane Sci 306:47

    Article  CAS  Google Scholar 

  17. Chang YW, Wang E, Shin G, Han JE, Mather PT (2007) Polym Adv Technol 18:535

    Article  CAS  Google Scholar 

  18. DeLuca NW, Elabd YA (2006) J Membrane Sci 282:217

    Article  CAS  Google Scholar 

  19. Deimede VA, Kallitsis JK (2005) Macromolecules 38:9594

    Article  CAS  Google Scholar 

  20. Kreuer KD (1996) Chem Mater 8:610

    Article  CAS  Google Scholar 

  21. Jin Y, Diniz da Costa JC, Lu GQ (2007) Solid State Ionics 178:937

    Article  CAS  Google Scholar 

  22. Panero S, Fiorenza P, Navarra MA, Romanowska J, Scrosati B (2005) J Electrochem Soc 152(12):A2400

    Article  CAS  Google Scholar 

  23. Metha V, Cooper JS (2003) J Power Sources 114:32

    Article  Google Scholar 

  24. Chang HY, Lin CW (2003) J Membrane Sci 218:295

    Article  CAS  Google Scholar 

  25. Gao Y, Robertson GP, Guiver MD, Wang GQ, Jian XG, Mikhailenko SD, Li X, Kaliaguine S (2006) J Membrane Sci 278:26

    Article  CAS  Google Scholar 

  26. Inagaki N, Tomiha K, Katsuura K (1974) Polymer 15:335

    Article  CAS  Google Scholar 

  27. Binsu VV, Nagarale RK, Shahi VK (2005) J Mater Chem 15:4823

    Article  CAS  Google Scholar 

  28. Huang Y, Pan QY, Dong XW, Cheng ZX (2006) Mater Chem Phys 97:431

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate Dr. Wu Xu at Ferro Corporation and Mr. Xin Wang at University of Western Ontario for valuable discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghua Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Z., Gao, J., Huai, Y. et al. Preparation and characterization of inorganic–organic hybrid proton exchange membranes based on phosphorylated PVA and PEG-grafted silica particles. J Sol-Gel Sci Technol 48, 267–271 (2008). https://doi.org/10.1007/s10971-008-1813-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1813-1

Keywords

Navigation