Skip to main content
Log in

In situ fluorescence probing of the chemical and structural changes during formation of hexagonal phase cetyltrimethylammonium bromide and lamellar phase CTAB/Poly(dodecylmethacrylate) sol–gel silica thin films

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Surfactant-templated mesostructured sol–gel films formed by evaporation induced self assembly (EISA) exhibit highly-ordered hexagonal, lamellar, and cubic structures. The steady-state dip-coating configuration allows both the chemistry and the dynamics of the EISA process to be traced in real time because the steps involved in the formation of the mesostructured material are separated both spatially and temporally in the dip-coating direction. The dynamic processes occurring during film formation can be conveniently monitored by the combination of interferometry and fluorescence spectroscopy of incorporated molecular probes. The selected probes respond to changes in their rotational mobility and the surrounding solvent composition and report these changes through their fluorescence characteristics. By taking in situ fluorescence spectra at various positions within the progressively thinning film, changes in the solvent composition, onset of micelle formation and further organization to the final mesophase structure can be followed. The luminescence of the probe molecule is measured with a spatial resolution of 100 μm. Two categories of surfactant-templated mesostructured sol–gel films were examined. Cetyltrimethylammonium bromide (CTAB) systems assemble into a 2-D hexagonal surfactant/silica mesophase with the surfactant concentration used in this study. CTAB dodecylmethacrylate systems assemble into a lamellar mesophase, which can be further polymerized to form a poly(dodecylmethacrylate)/silica hybrid nanocomposite that mimics nacre. X-ray diffraction patterns, transmission electron microscopy images, and other techniques are used to characterize the final films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dunn B, Zink JI (2007) Acc Chem Res 40:747

    Article  CAS  Google Scholar 

  2. Soler-Illia GJAA, Sanchez C, Lebeau B, Patarin J (2002) Chem Rev 102:4093

    Article  Google Scholar 

  3. Loy DA, Shea KJ (1995) Chem Rev 95:1431

    Article  CAS  Google Scholar 

  4. Brinker CJ, Scherer GW (1990) Sol–gel science. Academic, San Diego

    Google Scholar 

  5. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    Article  CAS  Google Scholar 

  6. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schumitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834

    Article  CAS  Google Scholar 

  7. Ogawa M (1994) J Am Chem Soc 116:7941

    Article  CAS  Google Scholar 

  8. Yang H, Kuperman A, Coombs N, Maniche-Afara S, Ozin GA (1996) Nature 379:703

    Article  CAS  Google Scholar 

  9. Yang H, Combs N, Sokolov I, Ozin GA (1996) Nature 381:589

    Article  CAS  Google Scholar 

  10. Aksay IA, Trau M, Manne S, Honma I, Yao N, Zhou L, Fenter P, Eisenberger PM, Gruner SM (1996) Science 273:892

    Article  CAS  Google Scholar 

  11. Tolbert SH, Schäffer TE, Feng J, Hansma PK, Stucky GD (1997) Chem Mater 9:1962

    Article  CAS  Google Scholar 

  12. Martin JE, Anderson MT, Odinek J, Newcomer P (1997) Langmuir 13:4133

    Article  CAS  Google Scholar 

  13. Ryoo R, Ko CH, Cho SJ, Kim JM (1997) J Phys Chem B 101:10610

    Article  CAS  Google Scholar 

  14. Sanchez C, Boissiere C, Grosso D, Laberty C, Nicole L (2007) Chem Mater 20:682

    Article  Google Scholar 

  15. Ogawa M, Kikuchi T (1998) Adv Mater 10:1077

    Article  CAS  Google Scholar 

  16. Tate MP, Eggiman BW, Kowalski JD, Hillhouse HW (2005) Langmuir 21:10112

    Article  CAS  Google Scholar 

  17. Grosso D, Cagnol F, Soler-Illia GJAA, Crepaldi EL, Amenitsch H, Brunet-Bruneau A, Bourgeois A, Sanchez C (2004) Adv Funct Mater 14:309

    Article  CAS  Google Scholar 

  18. Nicole L, Boissière C, Grosso D, Quach A, Sanchez C (2005) J Mater Chem 15:3598

    Article  CAS  Google Scholar 

  19. Lu Y, Ganguli R, Drewien CA, Anderson MT, Brinker CJ, Gong W, Guo Y, Soyez H, Dunn B, Huang MH, Zink JI (1997) Nature 389:364

    Article  CAS  Google Scholar 

  20. Huang MH, Dunn BS, Soyez H, Zink JI (1998) Langmuir 14:7331

    Article  CAS  Google Scholar 

  21. Huang MH, Dunn BS, Zink JI (2000) J Am Chem Soc 122:3739

    Article  CAS  Google Scholar 

  22. Grosso D, Babonneau F, Sanchez C, Soler-Illia GJAA, Crepaldi EL, Albouy PA, Amenitsch H, Balkenende AR, Brunet-Bruneau A (2003) J Sol Gel Sci Technol 26:561

    Article  CAS  Google Scholar 

  23. Nishida F, McKiernan JM, Dunn B, Zink JI, Brinker CJ, Hurd AJ (1995) J Am Chem Soc 78:1640

    CAS  Google Scholar 

  24. Franville AC, Dunn B, Zink JI (2001) J Phys Chem B 105:10335

    Article  CAS  Google Scholar 

  25. Lan EH, Dunn B, Zink JI (2000) Chem Mater 12:1874

    Article  CAS  Google Scholar 

  26. Huang MH, Soyez H, Dunn BS, Zink JI (2000) Chem Mater 12:231

    Article  CAS  Google Scholar 

  27. Huang MH, Kartono F, Dunn B, Zink JI (2002) Chem Mater 14:5153

    Article  CAS  Google Scholar 

  28. Sellinger A, Weiss PM, Nguyen A, Lu Y, Assink RA, Gong W, Brinker CJ (1998) Nature 394:256

    Article  CAS  Google Scholar 

  29. Clement NR, Gould M (1981) Biochemistry 20:1534

    Article  CAS  Google Scholar 

  30. Kaufman VR, Avnir D, Pines-Rojanski D, Huppert D (1988) J Non Cryst Solids 99:379

    Article  CAS  Google Scholar 

  31. Dunn B, Zink JI (1997) Chem Mater 9:2280

    Article  CAS  Google Scholar 

  32. Wolfbeis OS, Fürlinger E, Kroneis H, Marsoner H (1983) Fresnius Z Anal Chem 314:119

    Article  CAS  Google Scholar 

  33. Kano K, Fendler JH (1978) Biochim Biophys Acta 509:289

    Article  CAS  Google Scholar 

  34. Pouxviel JC, Dunn B, Zink JI (1989) J Phys Chem 93:2134

    Article  CAS  Google Scholar 

  35. Edelman GM, McClure WO (1968) Acc Chem Res 1:65

    Article  CAS  Google Scholar 

  36. Serway RA, Faughn JS (1992) College physics. Saunders College Publishing, New York, pp 817

    Google Scholar 

  37. Ditchurn RW (1976) Light, 3rd edn. Academic, London, pp 113

    Google Scholar 

  38. Weber G (1966) In: Hercules DM (ed) Fluorescence and phosphorescence analysis. Interscience, New York, pp 217–224

  39. Miller JM, Dunn B, Valentine JS, Zink JI (1996) J Non Cryst Solids 202:279

    Article  CAS  Google Scholar 

  40. Dave BC, Miller JM, Dunn B, Valentine JS, Zink JI (1997) J Sol Gel Sci Technol 8:629

    CAS  Google Scholar 

  41. Chia S, Jun U, Tamanoi F, Dunn BS, Zink JI (2000) J Am Chem Soc 122:6488

    Article  CAS  Google Scholar 

  42. Corriu RJP, Mehdi A, Reye C (2005) J Mater Chem 15:4285

    Article  CAS  Google Scholar 

  43. Corriu RJP, Mehdi A, Reye C, Thieuleux C (2002) Chem Commun 1382

  44. Hernandez R, Franville AC, Minoofar P, Dunn B, Zink JI (2001) J Am Chem Soc 123:1248

    Article  CAS  Google Scholar 

  45. Minoofar PM, Hernandez R, Franville AC, Chia S, Dunn B, Zink JI (2003) J Sol Gel Sci Technol 26:571

    Article  CAS  Google Scholar 

  46. Minoofar PM, Dunn BS, Zink JI (2005) J Am Chem Soc 127:2656

    Article  CAS  Google Scholar 

  47. Johansson E, Zink JI (2007) J Am Chem Soc 129:14437

    Article  CAS  Google Scholar 

  48. Huo Q, Margolese DI, Ciesla U, Demuth DG, Feng P, Gier TE, Sieger P, Firouzi A, Chmelka BF, Schüth F, Stucky GD (1994) Chem Mater 6:1176

    Article  CAS  Google Scholar 

  49. Raman NK, Anderson MT, Brinker CJ (1996) Chem Mater 8:1682

    Article  CAS  Google Scholar 

  50. Ross S, Morrison ID (1988) Colloid systems and interfaces. Wiley, New York, p 173

    Google Scholar 

  51. Myers D (1988) Surfactant science and technology. VCH Publishers, New York, p 81

    Google Scholar 

  52. Clint JH (1992) Surfactant aggregation. Chapman & Hall, New York, p 147

    Google Scholar 

  53. Rosen MJ (1989) Surfactants and interfacial phenomena, 2nd edn. Wiley, New York, p 108

    Google Scholar 

Download references

Acknowledgement

This work was made possible by grants from the National Science Foundation (Grant DMR0346610 and CHE 0507929).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bruce S. Dunn, Jeffrey I. Zink or C. Jeffrey Brinker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, M.H., Soyez, H.M., Dunn, B.S. et al. In situ fluorescence probing of the chemical and structural changes during formation of hexagonal phase cetyltrimethylammonium bromide and lamellar phase CTAB/Poly(dodecylmethacrylate) sol–gel silica thin films. J Sol-Gel Sci Technol 47, 300–310 (2008). https://doi.org/10.1007/s10971-008-1755-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1755-7

Keywords

Navigation