Skip to main content
Log in

Utilization of sol–gel ceramics for the immobilization of living microorganisms

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Two possible methods are described for using sol–gel technology to immobilize living microorganisms, either embedding the cells within thin silica layers, or using the technique of freeze-gelation to immobilize microorganisms within molded ceramic parts. The preparation and structure of both biocer variants are outlined, and examples are given for the activity and storage stability of embedded microorganisms. Silica layers were used to immobilize various bacteria and algae. Survival rates after storage are given for Pseudomonas fluorescence bacteria and for green algae such as H. pluvialis, C. vulgaris, B. braunii and N. limnetica embedded within thin transparent silica layers. The bioactivity of bacteria immobilized in freeze-gelation ceramics was investigated by monitoring glucose consumption for P. fluorescens NCIMB 11764, and phenol degradation for Rhodococcus ruber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Böttcher H (2000) J Prakt Chem 342:427

    Article  Google Scholar 

  2. Livage J, Coradin T, Roux C (2001) J Phys Condens Matter 13:R673

    Article  CAS  Google Scholar 

  3. Böttcher H, Soltmann U, Mertig M, Pompe W (2004) J Mater Chem 14:2176

    Article  Google Scholar 

  4. Carturan G, Dal Toso R, Boninsegna S, Dal Monte R (2004) J Mater Chem 14:2087

    Article  CAS  Google Scholar 

  5. Baca HK, Carnes E, Singh S, Ashley C, Lopez D, Brinker CJ (2007) Acc Chem Res 40:836

    Article  CAS  Google Scholar 

  6. Coradin T, Livage J (2007) Acc Chem Res 40:819

    Article  CAS  Google Scholar 

  7. Coradin T, Boissière M, Livage J (2006) Curr Med Chem 13:99

    Article  CAS  Google Scholar 

  8. Perullini M, Rivero MM, Jobbágy M, Mentaberry A, Bilmes SA (2007) J Biotechnol 127:542

    Article  CAS  Google Scholar 

  9. Fiedler D, Thron A, Soltmann U, Böttcher H (2004) Chem Mater 16:3040

    Article  CAS  Google Scholar 

  10. Künzelmann U, Böttcher H (1997) Sens Actuators B Chem 38–39:222

    Article  Google Scholar 

  11. Conroy JFT, Power ME, Martin J, Earp B, Hosticka B, Daitch CD, Norris PM (2000) J Sol–Gel Sci Technol 18:269

    Article  CAS  Google Scholar 

  12. Fiedler D, Hager U, Franke H, Soltmann U, Böttcher H (2007) J Mater Chem 17:261

    Article  CAS  Google Scholar 

  13. Tamiya TH, Yamura T, Shibata K, Hase E, Nihei T (1953) Biochim Biophys Acta 12:23

    Article  CAS  Google Scholar 

  14. Lacoste RJ, Vaneble SH, Stone JC (1959) Anal Chem 31:1246

    Article  CAS  Google Scholar 

  15. Brasack I, Böttcher H, Hempel U (2000) J Sol–Gel Sci Technol 19:479

    Article  CAS  Google Scholar 

  16. Matys S, Raff J, Soltmann U, Selenska-Pobell S, Böttcher H, Pompe W (2004) Chem Mater 16:5549

    Article  CAS  Google Scholar 

  17. Raff J, Soltmann U, Matys S, Selenska-Pobell S, Böttcher H, Pompe W (2003) Chem Mater 15:240

    Article  CAS  Google Scholar 

  18. Statham MJ, Hammett F, Harris B, Cooke RG, Jordan RM, Roche A (1998) J Sol–Gel Sci Technol 13:171

    Article  CAS  Google Scholar 

  19. Koch D, Andresen L, Schmedders T, Grathwohl G(2003) J Sol–Gel Sci Technol 26:149

    Article  CAS  Google Scholar 

  20. Sofie SW, Dogan F (2001) J Am Ceram Soc 84(7):1459

    CAS  Google Scholar 

  21. Soltmann U, Böttcher H, Koch D, Grathwohl G (2003) Mater Lett 57:2861

    Article  CAS  Google Scholar 

  22. Hubálek Z (2003) Cryobiology 46:205

    Article  Google Scholar 

  23. Polge C, Smith AU, Parkes AS (1949) Nature 164:666

    Article  CAS  Google Scholar 

  24. Lovelock J (1959) Nature 183:1394

    Article  CAS  Google Scholar 

  25. Tessema DA, Rosen R, Pedazur R, Belkin S, Gun J, Ekeltchik I, Lev O (2006) Sens Actuators B Chem 113:768

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. S. Matys and Dr. M. Mkandawire, Institute for Material Science, Dresden University of Technology, for the SEM micrographs. The work was supported by the German Ministry of Education and Research (project 03WKBH6B & 02WR0696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Soltmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soltmann, U., Böttcher, H. Utilization of sol–gel ceramics for the immobilization of living microorganisms. J Sol-Gel Sci Technol 48, 66–72 (2008). https://doi.org/10.1007/s10971-008-1753-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1753-9

Keywords

Navigation