Skip to main content
Log in

Subcritically dried RF-aerogels catalysed by hydrochloric acid

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hydrochloric acid (HCl) used as catalyst for the preparation of RF-aerogels leads to organic aerogels in very short gelation times. The gelation time can be varied from a few seconds to minutes. The wet gels can be dried under ambient conditions. By variation of the sol composition or catalyst concentration the microstructure of the dry gels can be modified. The aerogel densities are in the range of 210–410 kg/m3. The particle sizes, determined by scanning electron microscopy (SEM), are in the range of 700–1,500 nm. The particles look essentially spherical and their size spectrum can be close to monodisperse. The specific surface is measured by nitrogen adsorption (BET). Thermogravimetry (TGA) is employed to study the drying process, annealing reactions and decomposition of the aerogel into a carbon aerogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brück S, Ratke L (2003) J Sol–Gel Sci Technol 26(1):663

    Article  Google Scholar 

  2. Brück S, Ratke L (2004) Giesserei Forschung 56(2):55

    Google Scholar 

  3. Voss D, Ratke L (2005) Giesserei Forschung 57(1):18

    Google Scholar 

  4. Ratke L, Brück S (2006) J Mater Sci 41:1019

    Article  CAS  Google Scholar 

  5. Ratke L, Fricke J (2003) US Patent 6599953

  6. Pekala RW, Alviso CT, Nielson JK, Tran TD (1995) Mat Res Soc Symp Proc 393:413

    CAS  Google Scholar 

  7. Bonsal RC, Donnet JB, Stoeckli HF (1988) Active carbon. Marcel Dekker, New York

    Google Scholar 

  8. Pekala RW, Kong FM (1989) Revue de Physique Appliquée, Colloque C4, Suppl. au n°4, Tome 24

  9. Mayer ST, Kaschmitter JL, Pekala RW (1995) US Patent 5420168

  10. Fischer U, Saliger R, Bock V, Petrivic R, Fricke J (1997) J Porous Mater 4:281

    Article  CAS  Google Scholar 

  11. Brück S, Reuß M, Richter HE, Klein H, Haubner P, Ratke L (2004) International Symposium on Physical Sciences in Space, Toronto. May 2004, pp 23–27

  12. Thiel J, Klein H, Brück S, Ratke L (2003) GIT Labor Fachzeitschrift 47:162

    CAS  Google Scholar 

  13. Fricke J (1988) J Non-Cryst Solids 100:169

    Article  CAS  Google Scholar 

  14. Wiener D, Reichenauer G, Scherb T, Fricke J (2004) J Non-Cryst Solids 350:126

    Article  CAS  Google Scholar 

  15. Job N, Théry A, Pirard R, Marien J, Kocon L, Rouzaud J-N, Béguin F, Pirard J-P (2005) Carbon 43:2481

    Article  CAS  Google Scholar 

  16. Job N, Panariello F, Marien J, Crine M, Pirard J-P, Léonard A (2006) J Non-Cryst Solids 352:24

    Article  CAS  Google Scholar 

  17. Czakkel O, Marthi K, Geissler E, Lázló K (2005) Microporous Mesoporous Mater 86:124

    Article  CAS  Google Scholar 

  18. Tamon H, Ishizaka H, Yamamoto T, Suzuki T (1999) Carbon 37:2049

    Article  CAS  Google Scholar 

  19. Kocklenberg R, Mathieu B, Blacher S, Pirard R, Pirard JO, Sorby R, Van den Bossche G (1998) J Non-Cryst Solids 225:8

    Article  CAS  Google Scholar 

  20. Horikawa T, Hayashi J, Muroyama K (2004) Carbon 42:169

    Article  CAS  Google Scholar 

  21. Fairén-Jiménez D, Carrasco-Marín F, Moreno-Castilla C (2006) Carbon 44:2301

    Article  Google Scholar 

  22. Li W-C, Lu A-H, Schüth F (2005) Chem Mater 17:3620

    Article  CAS  Google Scholar 

  23. Brandt R (2004) Sauer katalysierte, unterkritisch getrocknete Resorcin-Formaldehyd-Aerogele und daraus abgeleitete Kohlenstoff-Aerogele. Dissertation (PhD), Universität Würzburg

  24. Brandt R, Petricevic R, Pröbstle H, Fricke J (2003) J Porous Mater 10:171

    Article  CAS  Google Scholar 

  25. Brandt R, Fricke J (2004) J Non-Cryst Solids 350:131

    Article  CAS  Google Scholar 

  26. Durairaj J (2005) Resorcinol: chemistry, technology and applications. Springer, Berlin

    Google Scholar 

  27. Brinker CJ, Scherer GW (1990) Sol–Gel science. Academic Press, London

    Google Scholar 

  28. Iler RK (1979) The chemistry of silica. Wiley & Sons, Inc., New York

    Google Scholar 

Download references

Acknowledgement

This work is supported by Deutsche Forschungsgemeinschaft (DFG)/Bonn (RA537/8-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Reuß.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuß, M., Ratke, L. Subcritically dried RF-aerogels catalysed by hydrochloric acid. J Sol-Gel Sci Technol 47, 74–80 (2008). https://doi.org/10.1007/s10971-008-1733-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1733-0

Keywords

Navigation