Skip to main content
Log in

Sol–gel matrices for controlled release: from macro to nano using emulsion polymerisation

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

By combining sol–gel technology with emulsion chemistry, it is possible to produce spherical particles with a designed microstructure based on a judicious choice of solvent/surfactant and sol–gel reaction parameters. When an active molecule is located in the aqueous droplet of a water-in-oil (W/O) emulsion, encapsulation occurs as the silicon precursors polymerise to build an oxide cage around the active species. By changing the solvent–surfactant combination, the particle size can be varied from 10 nm to 100 μm. The size of the particles is controlled by the size of the emulsion droplet, which acts as a nano-reactor for the sol–gel reaction. The release profiles can be tailored, independently of the particle size, by controlling the internal structure of the particles: pore volume, pore size, tortuosity, and surface chemistry (e.g. by introduction of trialkoxysilane). This can be easily achieved by controlling sol–gel processing parameters such as the water-to-alkoxide ratio, pH, alkoxide concentration, ageing, drying time and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2 
Fig. 3 
Fig. 4 
Fig. 5 
Fig. 6
Fig. 7
Fig. 8 
Fig. 9 
Fig. 10 
Fig. 11 
Fig. 12 
Fig. 13 
Fig. 14 
Fig. 15 
Fig. 16 
Fig. 17 
Fig. 18 
Fig. 19 
Fig. 20 
Fig. 21 

Similar content being viewed by others

References

  1. Zink JI, Dunn BS (1991) J Mater Chem 1(6):903

    Article  Google Scholar 

  2. Boettcher H, Kallies K-H, Haufe H, Seidel J (1999) Adv Mater 11(2):138

    Article  CAS  Google Scholar 

  3. (a) Braun S, Rappoport S, Zusman R, Avnir D, Ottolenghi M (1990) Mater Let 10:1; (b) Avnir D, Braun S, Ottolenghi M (1992) ACS Symp Ser 499:384; (c) Avnir D, Braun S, Lev O, Ottolenghi M (1994) Chem Mater 6:1605; (d) Dave BC, Dunn B, Valentine JS, Zink JI (1996) 622:351; (e) Wie Y, Xu J, Feng Q, Dong H, Lin M (2000) Mater Let 44:6

  4. (a) Gill I, Ballesteros A (1998) JACS 120:8587; (b) Livage J, Roux C, Da Costa J-M, Desportes I, Quinson J-F (1996) J Sol–Gel Sci Technol 7:45; (c) Rietti-Stait M, Ronen D, Mandelbaum RT (1996) J Sol–Gel Sci Technol 7:77; (d) Finnie KS, Bartlett JR, Woolfrey JL (2000) J Mater Chem 10:1099

  5. (a) Dire S, Cavazza A, Campostrini R, Carturan G (1992) Eur Mater Res Sci Monogr 5:151; (b) Boninsegna S, Bosetti P, Carturan G, Dellagiacoma G, Dal Monte R, Rossi M (2003) J Biotechnol 100(3):277

    Google Scholar 

  6. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego

    Google Scholar 

  7. Barbé C, Bartlett J, Kong L, Finnie K, Lin HQ, Larkin M, Calleja S, Bush A, Calleja G (2004) Adv Mater 16:1959

    Article  Google Scholar 

  8. Radin S, Ducheyne P, Kamplain T, Tan BH (2001) J Biomedical Res 57:313

    Google Scholar 

  9. Ahola M, Sailynoja ES, Raitavuo MH, Vaahtio MM, Salonen JI, Yili-Urpo AUO (2001) Biomaterials 22:2163; Roveri N, Morpurgo M, Palazzo B, Parma B, Vivi L (2005) Anal Bioanal Chem 381:601

  10. Kortesuo P, Ahola M, Kangas M, Yli-Urpo TA, Kiesvaara J, Marvola M (2001) Int J Pharm 221:107

    Article  CAS  Google Scholar 

  11. Bottcher H, Slowik P, Suss W (1998) J Sol–gel Sci Technol 13:277

    Article  CAS  Google Scholar 

  12. Santos EM, Radin S, Ducheyne P (1999) Biomaterials 20:1695

    Article  CAS  Google Scholar 

  13. (a) Siemenska L, Ferguson M, Zerda TW, Couch E (1997) J Sol–Gel Sci Technol 8:1105; (b) Viitala R, Jokinen M, Liisa Maunu S, Jalonen H, Rosenholm JB (2005) J Non-Crystal Sol 351:3225

    Google Scholar 

  14. Ahola M, Kortesuo P, Kangasniemi I, Kiesvaara TJ, Yli-Urpo A (2000) Int J Pharm 195:219

    Article  CAS  Google Scholar 

  15. Lopez T, Manjarrez J, Rembao D, Vinogradova E, Moreno A, Gonzalez RD (2006) Mater Lett 60:2903

    Article  CAS  Google Scholar 

  16. Lopez T, Sotelo J, Navarrete J, Ascencio JA (2006) Opt Mater 29:88

    Article  CAS  Google Scholar 

  17. Koskinen MK, Toriserva M, Ahonen M, Kahari V-M, Salonen J (2003) Controlled release society 30th annual meeting proceedings 2003, 597

  18. Kortesuo P, Ahola M (1997) PCT WO 97/45367

  19. Kortesuo P, Ahola M, Kangas M, Jokinen M, Leino T, Vuorilehto L, Laakso S, Kiesvaara AJ, Yli-Urpo A, Marvola M (2002) Biomaterials 23:2795

    Article  CAS  Google Scholar 

  20. Czuryszkiewicz T, Areva S, Honkanen M, Lindén M (2005) Coll Surfaces A 254:69

    Article  CAS  Google Scholar 

  21. Barbe CJ, Bartlett JR (2001) PCT WO PCT WO 01/62232

  22. Finnie KS, Waller DJ, Perret FL, Krause-Heuer AM, Lin HQ, Hanna JV, Barbé CJ submitted to J Mater Sci: Materials in Medicine

  23. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego, pp 212–213

    Google Scholar 

  24. Atanacio AJ, Latella BA, Barbe CJ, Swain MV (2005) Surf Coat 192:354–364

    Article  CAS  Google Scholar 

  25. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego, pp 467–468

    Google Scholar 

  26. Bush A, Beyer R, Trautman R, Barbe C, Bartlett J (2004) J Sol–Gel Sci Technol 32:85

    Article  CAS  Google Scholar 

  27. Arriagada FJ, Osseo-Asare K (1999) J Coll Interface Sci 211:210

    Article  CAS  Google Scholar 

  28. Chang C-L, Fogler HS (1997) Langmuir 13:3295

    Article  CAS  Google Scholar 

  29. Arriagada J, Osseo-Asare K (1994) J Dispersion Sci Technol 15(1):59–71

    Article  CAS  Google Scholar 

  30. (a) Jain R (1998) J Control Release 53:49; (b) Moghimi SM, Hunter AC, Murray JC (2001) Pharmaco Rev 53:283; (c) Carmeliet P, Jain RK (2000) Nature 407:249

  31. Borchardt G, Brandriss S, Kreuter J, Margel S (1994) J Drug Targeting 2:61

    Article  CAS  Google Scholar 

  32. Finnie K, Bartlett J, Barbe C, Kong L (2007) Langmuir 23:3017

    Article  CAS  Google Scholar 

  33. Osseo-Asare K (1999) Microemulsion-mediated synthesis of nanosize oxide materials. Handbook of microemulsion science and technology. Marcel Dekker, pp 549–603

  34. Finnie KS, Jacques DA, McGann MJ, Blackford MG, Barbé CJ (2006) J Mater Chem 46:4494

    Article  Google Scholar 

  35. Barbé CJ, Finnie KS, Kong L (2007) CRS Newsl 24(2):17

    Google Scholar 

Download references

Acknowledgements

We would like to thank our colleagues from ANSTO with various sample characterizations in particular Joel Davis and Dr. Arthur Day for SEM and Dr. Greg Lumpkin for TEM on the Triton X-114 samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe J. Barbé.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbé, C.J., Kong, L., Finnie, K.S. et al. Sol–gel matrices for controlled release: from macro to nano using emulsion polymerisation. J Sol-Gel Sci Technol 46, 393–409 (2008). https://doi.org/10.1007/s10971-008-1721-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1721-4

Keywords

Navigation