Skip to main content
Log in

Nano/subnano-tuning of porous ceramic membranes for molecular separation

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In sol–gel processing, porous ceramic membranes can be prepared by sol-coating porous substrates and drying for gelling, followed by a firing process. Ceramic membranes prepared by sol–gel processing can be categorized into amorphous materials such as silica, and crystalline materials such as alumina and titania. Amorphous silica networks, which can be prepared by the polymeric sol route, have ultra-microporous pores that allow small molecules such as helium and hydrogen to permeate. On the other hand, crystalline materials, which are mostly prepared by the colloidal sol route, have nano-sized pores in the range of one to several nanometers. In this article, sol–gel derived SiO2 and TiO2 membranes with controlled pore sizes in the range of sub-nano to nanometers will be reviewed with respect to membrane preparation and to their application in the separation of the gas and liquid phases. Ceramic membranes with high performance can be obtained by precise control of membrane structures (pore size, pore size distribution, thickness, pore shape, etc.) and membrane materials (SiO2, TiO2, composite oxide, hybrid materials, etc.). Nano/subnano-tuning of porous ceramic membranes is quite important for the improvement of membrane permeability and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Mulder M (1996) Basic principles of membrane technology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  2. Hsieh HP (1996) Inorganic membranes for separation and reaction. Elsevier, Amsterdam

    Google Scholar 

  3. Bhave RR (1991) Inorganic membranes: synthesis, characterization, and applications. Van Nostrand Reinhold, New York

    Google Scholar 

  4. Burggraaf AJ, Cot T (1996) Fundamentals of inorganic membrane science and technology. Elsevier, Amsterdam

    Google Scholar 

  5. Tsuru T (2001) Sep Purif Methods 30:191

    Article  CAS  Google Scholar 

  6. Gavalas GR, Megiris CE, Nam SW (1989) Chem Eng Sci 44:1829

    Article  CAS  Google Scholar 

  7. Nomura M, Ono K, Gopalakrishnan S, Sugawara T, Nakao S (2000) J Membr Sci 251:151

    Article  CAS  Google Scholar 

  8. Tsuru T, Shutoh T, Nakao S, Kimura S (1994) Sep Sci Technol 29:971

    Article  CAS  Google Scholar 

  9. Amar NB, Saidani H, Deratani A, Palmeri J (2007) Langmuir 23:2937

    Article  CAS  Google Scholar 

  10. Brinker CJ, Sehgal R, Hietala SL, Deshpande RD, Smith DM, Loy D, Ashley CS (1994) J Membr Sci 94:85

    Article  CAS  Google Scholar 

  11. Asaeda M, Yamasaki S (2001) Sep Purif Technol 25:151

    Article  CAS  Google Scholar 

  12. Yazawa T, Tanaka H, Nakamichi H, Yokoyama T (1991) J Membr Sci 60:307

    Article  CAS  Google Scholar 

  13. Tsuru T, Wada S, Izumi S, Asaeda M (1998) J Membr Sci 149:127

    Article  CAS  Google Scholar 

  14. Yang J, Yoshioka T, Tsuru T, Asaeda M (2006) J Membr Sci 284:205

    Article  CAS  Google Scholar 

  15. Yoshida K, Hirano Y, Fujii H, Tsuru T, Asaeda M (2001) J Chem Eng Jpn 34:523

    Article  CAS  Google Scholar 

  16. Xu Q, Anderson M (1994) J Am Ceram Soc 77:1939

    Article  CAS  Google Scholar 

  17. Puhlfürß P, Voigt A, Weber R, Morbé M (2000) J Membr Sci 174:123

    Article  Google Scholar 

  18. Tsuru T, Hironaka D, Yoshioka T, Asaeda M (2001) Sep Purif Technol 25:307

    Article  CAS  Google Scholar 

  19. Tsuru T, Hino T, Yoshioka T, Asaeda M (2001) J Membr Sci 186:257

    Article  CAS  Google Scholar 

  20. Katz MG, Baruch G (1986) J Membr Sci 58:199

    CAS  Google Scholar 

  21. Fain DE (1989) Proceedings of the first international conference on inorganic membranes. Montpelier, France, p 199

  22. Tsuru T, Takata Y, Kondo H, Hirano F, Yoshioka T, Asaeda M (2003) Sep Purif Technol 32:23

    Article  CAS  Google Scholar 

  23. Yoshioka T, Nakanishi E, Tsuru T, Asaeda M (2001) AIChE J 47:2052

    Article  CAS  Google Scholar 

  24. Tsuru T, Tsuge T, Kubota S, Yoshida K, Yoshioka T, Asaeda M (2001) Sep Sci Technol 36:3721

    Article  CAS  Google Scholar 

  25. Kuraoka K, Amakawa R, Matsumoto K, Yazawa T (2000) J Membr Sci 175:2153

    Article  Google Scholar 

  26. Morooka S, Yan S, Kusakabe K, Akiyama Y (1995) J Membr Sci 101:89

    Article  CAS  Google Scholar 

  27. Nomura M, Masahiro S, Aida H, Nakatani K, Gopalakrishnan S, Sugawara T, Ishikawa T, Kawamura M, Nakao S (2006) Ind Eng Chem 45:395

    Google Scholar 

  28. Tsai CY, Tam SY, Lu Y, Brinker CJ (2000) J Membr Sci 169:255

    Article  CAS  Google Scholar 

  29. de Vos RM, Verwij H (1998) Science 279:1710

    Article  Google Scholar 

  30. Zivkovic T, Benes N, Blank D, Bouwmeester H (2004) J Sol-Gel Sci Technol 31:205

    Article  CAS  Google Scholar 

  31. Duke MC, da Costa JC, Lu GQ, Petch M, Gray P (2004) J Membr Sci 241:32

    Article  CAS  Google Scholar 

  32. Mattersby S, Teieria PW, Beltramini J, Duke MC, Rudolph V, da Costa JC (2006) Catal Today 116:12

    Article  CAS  Google Scholar 

  33. Kanezashi M, Yoshioka T, Tsuru T, Asaeda M (2004) Trans Mater Res Soc Jpn 29:3267

    CAS  Google Scholar 

  34. Kanezashi M, Asaeda M (2005) J Chem Eng Jpn 38:908

    Article  CAS  Google Scholar 

  35. Asaeda M, Tsuru T (2006) Bull Ceram Soc Jpn 41:921

    CAS  Google Scholar 

  36. Yoshino Y, Suzuki T, Nair BN, Taguchi H, Itoh N (2005) J Membr Sci 267:8

    Article  CAS  Google Scholar 

  37. Lee DW, Sea B, Lee KY, Lee KH (2002) Ind Eng Chem Res 41:3584

    Google Scholar 

  38. Lee DW, Lee YG, Sea B, Ihm SK, Lee KH (2004) J Membr Sci 236:53

    Article  CAS  Google Scholar 

  39. Iwamoto Y (2004) Membrane 29:258

    CAS  Google Scholar 

  40. Ikuhara Y, Mori H, Saito T, Iwamoto Y (2007) J Am Ceram Soc 90:546

    Article  CAS  Google Scholar 

  41. Shibao F, Jeong BH, Hasegawa Y, Sotowa K, Kusakabe K (2004) Sep Sci Technol 39:1259

    Article  CAS  Google Scholar 

  42. Iwamoto Y, Sato K, Kato T, Inada T, Kubo Y (2005) J Eur Ceram Soc 25:257

    Article  CAS  Google Scholar 

  43. Tsuru T, Yamaguchi K, Yoshioka T, Asaeda M (2004) AIChE J 50:2794

    Article  CAS  Google Scholar 

  44. Larbot A, Alami-Younssi S, Persin M, Sarrazin J, Cot L (1994) J Membr Sci 97:167

    Article  CAS  Google Scholar 

  45. Tsuru T, Izumi S, Yoshioka T, Asaeda M (2000) AIChE J 46:574

    Article  Google Scholar 

  46. Tsuru T, Miyawaki M, Yoshioka T, Asaeda M (2006) AIChE J 52:522

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshinori Tsuru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuru, T. Nano/subnano-tuning of porous ceramic membranes for molecular separation. J Sol-Gel Sci Technol 46, 349–361 (2008). https://doi.org/10.1007/s10971-008-1712-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1712-5

Keywords

Navigation