Skip to main content
Log in

Investigation on properties of V2O5–MWCNTs composites as cathode materials

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

An effective method to prepare the composites of multi-wall carbon nanotubes (MWCNTs) and vanadium pentoxide (V2O5) was presented. Vanadyl-triisopropoxide (VO(OC3H7)3) was used as the starting material, MWCNTs pretreated with acids by a two-step process was used as the conductive ingredient. V2O5–MWCNTs composites were synthesized via a sol–gel method with solvent exchange and an ambient pressure drying technique. The samples were characterized by SEM, TEM, XRD, BET, Raman spectra and electrical resistivity measurement respectively. The experimental results indicate that the V2O5–MWCNTs nanocomposite has a fiber-like and tri-dimensional network structure. Its surface area is up to 189.7 m2/g when the MWCNTs’ content is 15 wt%. And MWCNTs are dispersed homogeneously in the composites. The electrical resistivity of the composites decreases from 1,239 to 765 Ω·cm when the MWCNTs’ content increases from 0 to 10 wt%. Thus MWCNTs can improve properties of V2O5 aerogels as the cathode material in lithium batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chatterjee P, Sen Gupta SP, Suchitra S (2001) Bull Mater Sci 24(2):173

    Article  CAS  Google Scholar 

  2. Viswanathamurthi P, Bhattarai N, Kim HY, Lee DR (2003) Scripta Mater 49:577

    Article  CAS  Google Scholar 

  3. El Mandouh ZS, Selim MS (2000) Thin Solid Films 371(1–2):259

    Article  CAS  Google Scholar 

  4. Cai Y, Zhao SL, Wen JB, Liu XN (2006) J Func Mater (China) 37(9):1413

    CAS  Google Scholar 

  5. Amano F, Yamaguchi T, Tanaka T (2007) Catal Today 120(2):126

    Article  CAS  Google Scholar 

  6. Lee DB, Passerini S, Tipton AL, Owens BB, Smyrl WH (1995) J Electrochem Soc 142:L102

    Article  Google Scholar 

  7. Garcia M, Garofalini SH (1999) J Electrochem Soc 146:840

    Article  CAS  Google Scholar 

  8. Tang PE, Sakamoto JS, Baudrin E, Dunn B (2004) J Non-Cryst Solids 350:67

    Article  CAS  Google Scholar 

  9. Nordlinder S, Lindgren J, Gustafsson T, Edström K (2003) J Electrochem Soc 150:E280

    Article  CAS  Google Scholar 

  10. Li W, Garofaliniz SH (2005) J Electrochem Soc 152:A364

    Article  CAS  Google Scholar 

  11. Fu LJ, Liu H, Li C, Wu YP, Rahm E, Holze R, Wu HQ (2005) Prog Mater Sci 50(7):881

    Article  CAS  Google Scholar 

  12. Iijima S (1991) Nature 354(6348):56

    Article  CAS  Google Scholar 

  13. De Jong KP, Geus JW (2000) Cat Rev-Sci Eng 42(4):481

    Article  Google Scholar 

  14. Balasubramanian K, Burghard M (2005) Small 1(2):180

    Article  CAS  Google Scholar 

  15. Ajayan PM, Stephan Q, Redlich PH, Colliex C (1995) Nature 375(6532):564

    Article  CAS  Google Scholar 

  16. Satishkumar BC, Govindaraj A, Nath M, Rao CNR (2000) J Mater Chem 10:2115

    Article  CAS  Google Scholar 

  17. Sakamoto JS, Dunn B (2002) J Electrochem Soc 149:A26

    Article  CAS  Google Scholar 

  18. Dong W, Sakamoto J, Dunn B (2003) J Sol-Gel Sci Technol 26:641

    Article  CAS  Google Scholar 

  19. Chen XW, Zhu ZP, Ha¨vecker M, Su DS, Schlögl R (2007) Mater Res Bull 42(2):354

    Article  CAS  Google Scholar 

  20. Dong W, Sakamoto J, Dunn B (2003) Sci Technol Adv Mater 4:3

    Article  CAS  Google Scholar 

  21. Uchida N, Kittaka S (1994) J Phys Chem 98:2129

    Article  CAS  Google Scholar 

  22. Kittaka S, Hamaguchi H, Umezu T, Endoh T, Takenaka T (1997) Langmuir 13:1352

    Article  CAS  Google Scholar 

  23. Kittaka S, Yamaguchi T, Bellissent-Funel MC (2007) J Chem Phys 127(6):064705

    Article  CAS  Google Scholar 

  24. Schweiss R, Zhang N, Knoll W (2007) J Sol-Gel Sci Technol 44(1):1

    Article  CAS  Google Scholar 

  25. Barboux P, Baffier N, Morineau R, Livage J (1985) J Solid State Protonic Conductors III. Odense University Press, Paris, p 173

  26. Bali K, Kiss LB, Szorenyi T, Torok MI, Hevesi I (1987) J Phys 48(3):431

    CAS  Google Scholar 

  27. Livage J (1984) Mater Res Soc Symp Proc 32:125

    CAS  Google Scholar 

  28. Livage J, Jolivet JP, Tronc E (1990) J Non-Cryst Solids 121:35

    Article  CAS  Google Scholar 

  29. Barboux P, Baffier N, Morineau R, Livage J (1983) Solid State Ionics 9:1073

    Article  Google Scholar 

  30. Shanmugharaj AM, Bae JH, Lee KY, Noh WH, Lee SH, Ryu SH (2007) Compos Sci Technol 67(9):1813

    Article  CAS  Google Scholar 

  31. Kuznetsova A, Popova I, Yates JT, Bronikowski MJ, Huffman CB, Liu J, Smalley RE, Hwu HH, Chen JG (2001) J Amer Chem Soc 123:10699

    Article  CAS  Google Scholar 

  32. Livage J (1991) Chem Mater 3(4):578

    Article  CAS  Google Scholar 

  33. Lemerle J, Nejem L, Lefebvre J (1980) J Inorg Nucl Chem 42:17

    Article  CAS  Google Scholar 

  34. Gharbi N, Sanchez C, Livage J, Lemerle J, Nejem L, Lefebvre J (1982) J Inorg Chem 21:2758

    Article  CAS  Google Scholar 

  35. Harreld JH, Dunn B, Nazar LF (1999) Int J Inorg Mater 1:135

    Article  CAS  Google Scholar 

  36. Barboux P, Gourier D, Livage J (1982) J Phys C: Solid State Phys 15:7133

    Article  Google Scholar 

  37. Titus E, Cabral G, Madaleno JC, Neto VF, Shokuhfar T, Blau WJ, Ramesh Babu P, Misra DS, Gracio J (2007) Diamond Relat Mater 16(4–7):1195

    Article  CAS  Google Scholar 

  38. Kuznetsova A, Mawhinney DB, Naumenko V, Yates JT, Liu J, Smalley RE (2000) Chem Phys Lett 321:292

    Article  CAS  Google Scholar 

  39. Goh HW, Goh SH, Xu GQ, Pramoda KP, Zhang WD (2003) Chem Phys Lett 379:236

    Article  CAS  Google Scholar 

  40. De Laat AWM, Van den Heuvel GLT, Bohmer MR (1995) Colloids Surf A 98:61

    Article  Google Scholar 

  41. Yao N, Lordi V, Ma SXC, Dujardin E, Krishnan A, Treacy MMJ, Ebbesen TW (1998) J Mater Res 13:2432

    Article  CAS  Google Scholar 

  42. Harreld JH, Dong W, Dunn B (1998) Mater Res Bull 33:561

    Article  CAS  Google Scholar 

  43. Cremonesi A, Bersani D, Lottici PP, Djaoued Y, Brüning R (2006) Thin Solid Films 515:1500

    Article  CAS  Google Scholar 

  44. Backman HG, Ahmed FR, Barnes WH (1961) Z Kristallogr 115:110

    Article  Google Scholar 

  45. Pyun SI, Bae JS (1997) J Power Sources 68(2):699

    Google Scholar 

  46. Shembel E, Apostolova R, Nagirny V, Aurbach D, Markovsky B (1999) J Power Sources 81-82:480

    Article  CAS  Google Scholar 

  47. Tuinstra F, Koening JL (1970) J Chem Phys 53:1126

    Article  CAS  Google Scholar 

  48. Valiente AM, L’opez PN, Ramos IR, Ruiz AG, Li C, Xin Q (2000) Carbon 38:2003

    Article  Google Scholar 

  49. Mahanandia P, Vishwakarma PN, Nanda KK, Prasad V, Subramanyam SV, Dev SK, Satyam PV (2006) Mater Res Bull 41(12):2311

    Article  CAS  Google Scholar 

  50. Sanchez C, Livage J, Lucazeau G (1982) J Raman Spectrosc 12:68

    Article  CAS  Google Scholar 

  51. Abello L, Husson E, Repelin Y, Lucazeau G (1983) Spectrochim Acta 39A:641

    CAS  Google Scholar 

  52. Le Van K, Groult H, Mantoux A, Perrigaud L, Lantelme F, Lindström R, Badour-Hadjean R, Zanna S, Lincot D (2006) J Power Sources 160(1):592

    Article  CAS  Google Scholar 

  53. Kosacki I, Massot M, Balkanski M, Tuller HL (1992) Mater Sci Eng B12:345

    Article  CAS  Google Scholar 

  54. Benmoussa M, Ibnouelghazi E, Bennouna A, Ameziane EL (1995) Thin Solid Films 265:22

    Article  CAS  Google Scholar 

  55. Abello L, Husson E, Repelin Y, Lucazeau G (1985) J Solid State Chem 56:379

    Article  CAS  Google Scholar 

  56. Zhang XL, Frech R (1997) Electrochim Acta 42(3):475

    Article  CAS  Google Scholar 

  57. Chen W, Tao X, Liu Y (2006) Compos Sci Technol 66:3029

    Article  CAS  Google Scholar 

  58. Goh HW, Goh SH, Xu GQ, Pramoda KP, Zhang WD (2003) Chem Phys Lett 379(3-4):236

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by National Natural Science Foundation of China (Granted No. 50752001 and 50572073), the funds (Granted No. 07JC14052 and 07DZ22302) from Science and Technology Commission of Shanghai Municipality and the program (Granted No. 0652nm044) from Shanghai Nanotechnology Promotion Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Ming Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, GM., Wang, AR., Zhang, MX. et al. Investigation on properties of V2O5–MWCNTs composites as cathode materials. J Sol-Gel Sci Technol 46, 79–85 (2008). https://doi.org/10.1007/s10971-008-1708-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1708-1

Keywords

Navigation