Skip to main content
Log in

SANS study of hybrid silica aerogels under “in situ” uniaxial compression

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We have modified the inorganic silica network of aerogels with polydimethylsiloxane (PDMS), a hydroxyl-terminated polymer, to obtain an organic modified silicate (ORMOSIL). Reactions were assisted by high-power ultrasounds. The resulting gels were dried under supercritical conditions of the solvent to obtain a monolithic sono-aerogel. The mechanical behaviour of these aerogels can be tuned from brittle to rubbery as a function of the organic polymer content. In order to determine the links between the mechanical behaviour and modifications made to the microstructure, SANS (small-angle neutron scattering) experiments were carried out. To measure the intensities under “in situ” uniaxial compression of the aerogel, a specific sample-holder was built. Under uniaxial compression the 2D-diagrams were significantly anisotropic (butterfly pattern), indicating the rearrangement of the polymer. The form factor of these aerogels is described well by two correlation lengths, small microporous silica clusters surrounded by entangled polymer chains of 6 nm average size (blobs), which form a larger secondary level of agglomerates governed by the “frozen-in” elastic constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Geissler E, Horkay F, Hecht AM, Rochas C, Lindner P, Bourgaux C, Couarraze G (1997) Polymer 38:15–20

    Article  CAS  Google Scholar 

  2. Horkay F, Hecht AM, Zrinyi M, Geissler E (1996) Polym Gel Netw 4:451–465

    Article  CAS  Google Scholar 

  3. Schaefer DW, Suryawanshi Ch, Pakdel P, Ilavsky J, Jemian PR (2002) Physica A 314:686–695

    Article  CAS  Google Scholar 

  4. Schaefer DW, Beaucage G, Loy DA, Shea KJ, Lin JS (2004) Chem Mater 16:1402–1410

    Article  CAS  Google Scholar 

  5. Guo L, Hyeon-Lee J, Beaucage G (1999) J Non-Cryst Solids 243:61–69

    Article  CAS  Google Scholar 

  6. Moner-Girona M, Roig A, Molins E, Martínez E, Esteve J (1999) Appl Phys Lett 75:653–655

    Article  CAS  Google Scholar 

  7. Blanco E, Esquivias L, Litran R, Piñero M, Ramírez-del-Solar M, de la Rosa-Fox N (1999) Appl Organomet Chem 13:399–418

    Article  CAS  Google Scholar 

  8. Suslick KS, Price GJ (1999) Annu Rev Mater Sci 29:295–326

    Article  CAS  Google Scholar 

  9. McNamara WB III, Didenko YT, Suslick K (1999) Nature 401:772–775

    Article  CAS  Google Scholar 

  10. De la Rosa-Fox N, Esquivias L, Craievich A, Zarzycki J (1990) J Non-Cryst Solids 121:211–215

    Article  Google Scholar 

  11. Mackenzie JD, Huang Q, Iwamoto T (1996) J Sol–Gel Sci Tech 7:151–161

    Article  CAS  Google Scholar 

  12. Piñero M, Morales-Flórez V, de la Rosa-Fox N, Esquivias L (2005) Bol Soc Esp Ceram V 44(5):291–293

    Google Scholar 

  13. Brumberger H (1995) In: Modern aspects of small-angle scattering, NATO ASI series, vol 451. Kluwer Academic Publishers

  14. Keiderling U (1997) Physica B 234–236:1111

    Article  Google Scholar 

  15. Schaefer DW, Brow RK, Olivier BJ, Rieker T, Beaucage G, Hrubesh L, Lin JS (1995) ibid ref 11:299–307

    Google Scholar 

  16. Hoinkis E (1997) In: Thrower PA (ed) Chemistry and physics of carbon, vol 25. Marcel Dekker, Inc., pp 72–241

  17. Toledo-Fernández JA, Mendoza-Serna R, Morales-Flórez V, de la Rosa-Fox N, Santos A, Piñero M, Esquivias L (2007) Bol Soc Esp Ceram V 46:138–144

    Google Scholar 

  18. Kirste RG, Oberthur RC (1982) In: Glatter O, Kratky O (eds) Small angle X-ray scattering, Chap. 12. Academic Press, pp 387–431

  19. Pedersen JS (2000) J Appl Cryst 33:637–640

    Article  CAS  Google Scholar 

  20. Brinker CJ, Scherer GW (1990) In: Sol–gel science: the physics and chemistry of sol–gel processing, Chap. 3. Academic Press, Inc., pp 97–228

  21. Debye P, Bueche J (1949) J Appl Phys 20:518

    Article  CAS  Google Scholar 

  22. Roe R-J (2000) In: Methods of X-ray and neutron scattering in polymer science, Chap. 5. Oxford University Press, pp 155–208

Download references

Acknowledgments

This work has been supported in Spain by Project MAT2005-1583 of the CICyT. SANS measurements were made at the HMI, Germany, thanks to the European Commission, under the 6th Framework Programme through the Key Action: Strengthening the European Research Area, Research Infrastructures Contract no.: RII3-CT-2003-505925 (NMI3 no. 1150). Authors belong to the Research Group TEP-115 of the Junta de Andalucía.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. de la Rosa-Fox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosa-Fox, N.d.l., Morales-Flórez, V., Toledo-Fernández, J.A. et al. SANS study of hybrid silica aerogels under “in situ” uniaxial compression. J Sol-Gel Sci Technol 45, 245–250 (2008). https://doi.org/10.1007/s10971-008-1686-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1686-3

Keywords

Navigation