Skip to main content
Log in

Formation, densification and properties of sol–gel TiO2 films prepared from triethanolamine-chelated soluble precursor powders

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Amorphous, soluble powders were synthesized with triethanolamine (TEA) as chelating agent as precursors for TiO2 sol–gel solutions. Dip coating on glass substrates and subsequent annealing yielded thin films with excellent optical properties. Furthermore as-dried films were scraped of substrates, annealed at different temperatures and characterized in order to investigate the structural changes during processing. The observations were systematically compared with previous studies on precursor powders based on acetylacetone. Results indicate that triethanolamine provides both a sufficient hydrolytical stability of the Ti-precursor during coating and an adequate plasticity of the film material throughout thermal densification. These characteristics significantly improve the practical workability of the respective process. Additionally former assumptions regarding the relationship between film properties and intermediate structural features were verified and refined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Brinker CJ, Scherer GW (1990) Sol–Gel Science: The physics and chemistry of sol–gel Processing. Academic Press, San Diego

    Google Scholar 

  2. Scherer GW (1997) J Sol–Gel Sci Technol 8:353

    CAS  Google Scholar 

  3. Mougenot M, Lejeune M, Baumard JF, Boissiere C, Ribot F, Grosso D, Sanchez C, Noguera R (2006) J Am Ceram Soc 89:1876

    Article  CAS  Google Scholar 

  4. Pütz J, Aegerter MA (2004) Glass Sci Technol 77:229

    Google Scholar 

  5. MacKenzie J, Bescher E (2000) J Sol–Gel Sci Techn 19:23

    Article  CAS  Google Scholar 

  6. Brinker CJ, Hurd AJ, Schunk PR, Frye GC, Ashley CS (1992) J Non-Cryst Solids 147&148:424

    Article  Google Scholar 

  7. Brinker C, Hurd A, Frye G, Shunk P, Ashley C (1991) J Ceram Soc Jap 99:862

    CAS  Google Scholar 

  8. Poncelet O, Hubert-Pfalzgraf L, Daran J-C (1990) Polyhedron 9:1305

    Article  CAS  Google Scholar 

  9. Hubert-Pfalzgraf LG, Guillon Hervé (1998) Appl Organomet Chem 12:221

    Article  CAS  Google Scholar 

  10. Löbmann P (2005) J Sol–Gel Sci Techn 33:175

    Article  CAS  Google Scholar 

  11. Löbmann P, Röhlen P (2003) Glass Sci Techn 76:1

    Google Scholar 

  12. Bockmeyer M, Löbmann P (2006) Chem Mater 18:4478

    Article  CAS  Google Scholar 

  13. Bockmeyer M, Löbmann P (2007) Thin Solid Films 515:5212

    Article  CAS  Google Scholar 

  14. Ban T, Ohya Y, Takahashi Y (2003) J Sol–Gel Sci Technol 27:363

    Article  CAS  Google Scholar 

  15. Takahashi Y, Matsuoka Y (1988) J Mat Sci 23:2259

    Article  CAS  Google Scholar 

  16. Löbmann P, Jahn R, Seifert S, Sporn D (2000) J Sol–Gel Sci Technol 19:473

    Article  Google Scholar 

  17. Diaz-Parralejo A, Caruso R, Ortiz A, Guiberteau F (2004) Thin Solid Films 458:92

    Article  CAS  Google Scholar 

  18. Swanepoel R (1984) J Phys E: Sci Instrum 19:1214

    Google Scholar 

  19. Lide D, Frederikse H (1993–1994) CRC Handbook of Chemistry and Physics. CRC Press, Inc., Boca Raton

  20. Laube M, Rauch F, Ottermann C, Anderson O, Bange K (1996) Nucl Instr and Meth B 113:288

    Article  CAS  Google Scholar 

  21. Stoney GG (1909) Proc Roy Soc London A32:172

    Google Scholar 

  22. Flinn PA, Gardner DS, Nix WD (1987) IEEE Trans Electron Dev ED-34:689

    Article  CAS  Google Scholar 

  23. Kozuka H, Takenaka S, Tokita H, Hirano T, Higashi Y, Hamatani T (2003) J Sol–Gel Sci Technol 26:681

    Article  CAS  Google Scholar 

  24. Brenier R, Gagnaire A, Brenier R, Urlacher C, Mugnier J, Brunel M (1999) Thin Solid Films 338:136

    Article  CAS  Google Scholar 

  25. Yeşilel OZ, Ölmez H (2006) J Therm Anal Cal 86:211

    Article  CAS  Google Scholar 

  26. Takahashi Y, Ohsugi A, Arafuka T, Ohya T, Ban T, Ohaya Y (2000) J Sol–Gel Sci Technol 17:227

    Article  CAS  Google Scholar 

  27. Trakanprapai C, Esposito V, Licoccia S, Traversa E (2005) J Mater Res 20:128

    Article  CAS  Google Scholar 

  28. Caincross R, Chen S, Schunk P, Brinker C, Hurd A (1997) Ceram Trans 69:153

    Google Scholar 

  29. Roeder RK, Slamovich EB (1999) J Mater Res 14:2364

    Article  CAS  Google Scholar 

  30. Brinker C, Wallace S, Raman N, Sehgal R, Samuel J, Contakes S (1995) In: Pinnavaia T, Thorpe M (eds) Access in nanoporous materials. Plenum Press, New York, USA, p 123

  31. Ohya T, Nakayama A, Shibata Y, Ban T, Ohya Y, Takahashi Y (2003) J Sol–Gel Sci Technol 26:799

    Article  CAS  Google Scholar 

  32. Keddie JL, Braun PV, Giannelis EP (1994) J Am Ceram Soc 77:1592

    Article  CAS  Google Scholar 

  33. Popović S, Skoko Z, Gajović A, Furić K, Musić S (2005) Fizika A 14:19

    Google Scholar 

  34. Li Y, Hwang D-S, Lee NH, Kim S-J (2005) Chem Phys Lett 404:25

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peer Löbmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bockmeyer, M., Löbmann, P. Formation, densification and properties of sol–gel TiO2 films prepared from triethanolamine-chelated soluble precursor powders. J Sol-Gel Sci Technol 45, 251–259 (2008). https://doi.org/10.1007/s10971-007-1642-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-007-1642-7

Keywords

Navigation