Skip to main content
Log in

Preparation and optical characterization of catalyst free SiO2 sonogel hybrid materials

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The synthesis of sol-gel materials induced by ultrasonic irradiation (sonolysis) is implemented as an alternative method for the fabrication of highly pure organic-inorganic composites with good monolithic, mechanical and optical properties. Ultrasonic irradiation, instead of commonly used basic- or acidic-catalyst was used to produce acoustical cavitation within the liquid H2O/tetraethyl-ortosilicate (TEOS) reactants. This procedure forms a hydrolyzed-TEOS colloidal dispersion (sol) which produces, after drying, a highly pure SiO2 network. The resulting SiO2 glass exhibits high porosity and allows the inclusion of several organic compounds in the colloidal sol-state. Novel, optical active synthesized liquid crystalline (LC)-azo-compounds, bent shaped mesogens, cis- and trans-poly(1-ethynylpyrene)s, as well as fullerene (C60) spheres and classical organic dyes were successfully incorporated as dopant agents within the novel catalyst free (CF) SiO2-sonogel host matrix. Absorption and fluorescence spectroscopy studies were carried out in order to characterize the optical performance of both the CF-sonogel and several hybrid composites The pulsed laser photoacoustic technique (LPAT) was implemented to determine thermodynamic phase transitions of LC-based hybrids and laser induced damage (photo-degradation) in dye-based composites. Finally, comparative morphology studies between undoped reference samples and some doped composites were performed by Atomic Force Microscopy (AFM), where an optimal TEOS/dopant concentration ratio, to obtain good mechanical properties among the studied samples, has been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, San Diego

    Google Scholar 

  2. Fardad MA, Mishechkin OV, Fallahi M (2001) J Lightwave Technol 19(1):84

    Article  CAS  Google Scholar 

  3. Zhanjia H, Liying L, Lei X, Zhiling X, Haibo L, Wencheng W, Fuming L, Mingxin Y (2001) Acta Opt Sinica 21(1):111

    Google Scholar 

  4. Clark A, Terpugov V, Medrano F, Cervantes M, Soto D (1999) Opt Mater 13(3):355

    Article  CAS  Google Scholar 

  5. Sun XD, Wang XJ, Shan W, Song JJ, Fan M, Knobbe ET (1997) J Sol-Gel Sci Technol 9(2):169

    CAS  Google Scholar 

  6. Sanchez C, Leveau B (1996) Pure Appl Opt 5:689

    Article  CAS  Google Scholar 

  7. Andrews MP, Najafi SI (1997) Sol-gel polymer photonic devices: critical reviews optical science and technology. SPIE-Optical Engineering Press CR68, San Diego, California

    Google Scholar 

  8. Reyes-Esqueda JA, Vabre L, Lacaque R, Ramz F, Forget B, Dubois A, Briat B, Boccara C, Roger G, Canva M, Lévy Y, Chaput F, Boilot JP (2003) Opt Commun 220:59

    Article  CAS  Google Scholar 

  9. Pavel C, del Monte F, Worsfold DJ, Carlsson DJ, Grover ChP, Mackenzie JD (2000) Nature 408:64

    Article  CAS  Google Scholar 

  10. Marino IG, Lottici PP, Bersani D, Gnappi G, Lorenzi A, Montenero A (2004) J Non-Crystall Sol 345–346:428

    Google Scholar 

  11. Hsiue GH, Lee RH, Jeng RJ (1999) J Poly Sci: Part A-Poly Chem 37:2503

    Article  CAS  Google Scholar 

  12. Dunn B, Nishida F, Toda R, Zink LI, Allik TH, Chandra S, Hutchinson JA (1994) Advances in dye-doped sol-gel lasers: new materials for advanced solid state lasers symposium. In: Mater Res Soc, Pittsburgh, PA, USA, p 267

    Google Scholar 

  13. MacCraith BD, McDonagh C (2002) J Fluores 12:333

    Article  CAS  Google Scholar 

  14. Sakka S (2004) Handbook of sol-gel science and technology, vol III: processing characterization and applications, Kluwer Academic Press, Boston

    Google Scholar 

  15. Reyes-Esqueda J, Darracq B, Garcia-Macedo J, Canva M, Blanchard-Desce M, Chaput F, Lahlil K, Boilot JP, Brun A, Levy Y (2001) Opt Commun 198:207

    Article  CAS  Google Scholar 

  16. Choi DH, Lim SJ, Jahng WS, Kim N (1996) Thin Solid Films 287:220

    Article  CAS  Google Scholar 

  17. Hosoya Y, Ohsugi S, Muto S, Kurokawa Y (1996) Thin Solid Films 283:221

    Article  CAS  Google Scholar 

  18. Liying L, Lei X, Zhanjia H, Zhiling X, Jie C, Wencheng W, Fuming L (1999) Phys Lett A 262:206

    Article  Google Scholar 

  19. Kajzar F, Swalen DJ (1996) Organic thin films for waveguiding nonlinear optics. Gordon and Breach Publishers, San Diego

    Google Scholar 

  20. Rauch S, Selbmann Ch, Bault P, Sawade H, Heppke G, Morales-Saavedra O, Huang MYM, Jkli A (2004) Phys Rev E 69:021707

    Article  CAS  Google Scholar 

  21. Selvarajan A (2001) IEEE J Quantum Elect 37:1117

    Article  CAS  Google Scholar 

  22. Priebe G, Kunze K, Kentischer F, Schulz R, Morales O, Macdonald R, Eichler HJ (2000) In: 45th SPIE annual meeting vol 3143. SPIE-Optical Engineering Press, San Diego, California, p128

  23. Wilkes GL, Orler B, Huang HH (1985) Poly Prep 26:300

    CAS  Google Scholar 

  24. Morikawa A, Iyoku Y, Kakimoto M, Imai YJ (1992) Mater Chem 26:79

    Google Scholar 

  25. Flores-Flores JO, Saniger JM (2006) Catalyst-free SiO2 sonogels. J Sol-Gel Sci Technol 39:235

    Google Scholar 

  26. Rivera E, Belletête M, Natansohn A, Durocher G (2003) Can J Chem 81:1076

    Article  CAS  Google Scholar 

  27. Pelzl G, Eremin A, Diele S, Kresse H, Weissflog W (2002) J Mater Chem 12:2591

    Article  CAS  Google Scholar 

  28. Weissflog W, Sokolowski S, Dehne H, Das B, Grande S, Schroder MW, Eremin A, Diele S, Pelzl G, Kresse H (2004) Liq Cryst 31(7):923

    Article  CAS  Google Scholar 

  29. Eremin A, Diele S, Pelzl G, Weissflog W (2003) Phys Rev E 67:020, 702

    CAS  Google Scholar 

  30. Eastman-Kodak (1990) Cataloge No 54, Laboratory Chemicals, International Edition, USA

  31. Lambdachrome Laser Dyes (1986) Lambda-physik cataloge, 1st edition, Göttingen, Germany

  32. Suslick KS (1990) Science 247:1373

    Article  Google Scholar 

  33. de la Rosa-Fox N, Esquivias L, Zarzycki J (1987) Diffusion and Defect Data 53–54:363

    Google Scholar 

  34. Suslick KS (1986) Adv Organ Chem 25:73

    CAS  Google Scholar 

  35. Noltingk BE, Neppiras EA (1950) Proc Phys Soc B 63:674

    Article  Google Scholar 

  36. Esquivias L, de la Rosa-Fox N (2003) J Sol-Gel Sci Technol 26:651

    Article  CAS  Google Scholar 

  37. Greggand SJ, Sing KSW (1982) Adsorption, surface area and porosity, Academic Press, London

    Google Scholar 

  38. Sherer GW (1999) Cement and Concret Res 29:1149–1157

    Article  Google Scholar 

  39. Smirnova I (2002) Synthesis of silica aerogels and their application as a drug delivery system. Dissertation, TU-Berlin, Germany

  40. Saraidarov T, Reisfeld R, Pietraszkiewicz M (2000) Chem Phys Lett 330:515

    Article  CAS  Google Scholar 

  41. Macdonald R, Kentischer F, Warnick P, Heppke G (1998) Phys Rev Lett 81:4408

    Article  CAS  Google Scholar 

  42. Morales-Saavedra OG, Bulat M, Rauch S, Heppke G (2004) Mol Cryst Liq Cryst 413:607

    Article  CAS  Google Scholar 

  43. Ortega J, Pereda N, Folcia CL, Extebarria J, Ros MB (2000) Phys Rev E 63:011702

    Article  CAS  Google Scholar 

  44. Morales Saavedra OG (2003) Spatially resolved second harmonic microscopy in novel bent shaped liquid crystalline mesogens and applications to organic QPM-waveguiding structures. Dissertation, W&T Verlag, ISBN: 3-89820-477-4, TU-Berlin, Germany

  45. Ortega J, Gallastegui JA, Folcia CL, Etxebarra J, Gimeno N, Ros MB (2004) Liq Crys 31:579

    Article  CAS  Google Scholar 

  46. Morales-Saavedra OG, Castañeda R, Villagran-Muniz M, Flores-Flores JO, Bañuelos JG, Saniger JM, Rivera E (2006) Mol Cryst Liq Cryst 449:161

    Article  CAS  Google Scholar 

  47. Rivera E, Wang R, Zhu XX, Zargarian D, Giasson R (2003) J Mole Catalysis A: Chem 204–205:325

    Article  CAS  Google Scholar 

  48. Rivera E, Belletête M, Zhu XX, Durocher G, Giasson R (2002) Polymer 43:5059

    Article  CAS  Google Scholar 

  49. Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DDC, Dos Santos DA, Bredas JL, Logdlund M, Salanek WR (1999) Nature 397:121

    Article  CAS  Google Scholar 

  50. Heeger AJ (2001) Angew Chem Int Ed Engl 40:2591

    Article  CAS  Google Scholar 

  51. Bernius MT, Inbasekaran M, O’Brien J, Wu WS (2000) Adv Mater 12:1737

    Article  CAS  Google Scholar 

  52. Morales-Saavedra OG, Rivera E (2006) Linear and non linear optical properties of trans and cis-poly(1-ethynylpyrene) based sonogel hybrid materials, Polymer 47:5330, DOI: 101016/jpolymer200605042

  53. Reisfeld (2002) J Fluorescence 12(314):317

    Article  CAS  Google Scholar 

  54. Schultheiss S, Yariv E, Reisfeld R, Breur HD (2002) Photochem Photobiol Dvi 1(5):320

    Article  CAS  Google Scholar 

  55. Prasad PN, Williams DJ (1991) Introduction to nonlinear optical effects in molecules and polymers. Wiley Inter Sciences, New York, p 117

    Google Scholar 

  56. Shtykov NM, Barnik MI, Beresnev LA, Blinov LM (1985) Mol Cryst Liq Cryst 124:379

    CAS  Google Scholar 

  57. Zhong-Can OY, Yu-Zhang X (1985) Phys Rev A 32:189

    Article  Google Scholar 

  58. Arakelyan SM (1981) Mol Cryst Liq Cryst 71:137

    CAS  Google Scholar 

  59. Shtykov NM, Blinov LM, Dorozhkin AM, Barnik MI (1982) Pis’ma Zh Eksp Teor Fiz 35:142

    CAS  Google Scholar 

  60. Rivera E, Carreón-Castro MP, Rodriguez L, Cedillo G, Rodríguez L, Fomine S, Morales-Saavedra OG (2006) Dyes, Pigments, DOI: 101016/jdyepig200602023

  61. Kano S, Kohno M, Sakiyama K, Sasaki S, Aya N, Shimura H (2003) Chem Phys Lett 378:474

    Article  CAS  Google Scholar 

  62. Wang HL, Grigorova M, Maniloff ES, McBranch DW, Mattes BR (1997) Shynthetic Mater 84:253

    Article  CAS  Google Scholar 

  63. Dou K, Du JY, Knobbe ET (1999) J Luminesc 83–84:241

    Article  Google Scholar 

  64. Pineda-Flores JL, Castañeda-Guzmn R, Villagrn-Muniz M, Huanosta TA (2001) Apply Phys Lett 79(8):1166

    Article  CAS  Google Scholar 

  65. Marchi MC, Castañeda-Guzmn R, Pérez-Pacheco A, Bilmes SA, Villagrn-Muñiz M (2004) Int J Thermophys 25(2):491

    Article  CAS  Google Scholar 

  66. Altman JC, Stone RE, Dunn B, Nishida F (1991) IEEE Photonics Tech Lett 3:189

    Article  Google Scholar 

  67. Dunn B, Nishida F, Toda R, Zink JI, Allic TH, Chandra S, Hutchinson JA (1994) Mat Res Soc Symp Proc 329:267

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support from SEP-CONACYT (project: 47421) and DGAPA-PAPIIT-UNAM (projects Nr: IN-112703 and IN-112203) are gratefully acknowledged. O. G. Morales-Saavedra thanks Prof. Gerhard Pelzl (Martin-Luther University, Halle, Germany) who kindly donated the bent shaped mesogens and to the DAAD academic organization (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar G. Morales-Saavedra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales-Saavedra, O.G., Rivera, E., Flores-Flores, J.O. et al. Preparation and optical characterization of catalyst free SiO2 sonogel hybrid materials. J Sol-Gel Sci Technol 41, 277–289 (2007). https://doi.org/10.1007/s10971-006-9006-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-006-9006-2

Keywords

Navigation