Skip to main content
Log in

Synthesis and thermal evolution of TiO2-RuO2 xerogels

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Gels of the Ti\(_{1-x}\)Ru\(_{x}\)O\(_{2}\) system, where \(x= 0\), 0.001, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.3 and 0.5 (mol), have been synthesized by a polymeric sol-gel route from Ti (IV)-iso-propoxide and Ru (III) acetyl-acetonate (acac). The mechanisms of the hydrolysis and polycondensation reactions were studied by using Fourier Transform Infrared Spectroscopy (FTIR).

The evolution of the xerogels as a function of temperature was also determined. At temperatures, as low as 200°C, mixtures of antase Ti\(_{1-y}\)Ru\(_y\)O\(_2\) (Ass) solid solution and rutile Ti\(_{1-z}\)Ru\(_{z}\)O\(_{2}\) solid solution (Rss) were attained for compositions with \(x \le\) 0.3. For \(x = 0\), only the anatase phase is present (A) and for \(x = 0.5\), mixtures of anatase Ti\(_{1 -y}\)Ru\(_{y}\)O\(_{2}\) (Ass) solid solution, rutile Ti\(_{1-z}\)Ru\(_{z}\)O\(_{2}\) solid solution (Rss) and Ru\(_{1-a}\)Ti\(_{a}\)O\(_{2}\) (RuO\(_{2}\)ss) solid solution were attained. RuO\(_{2}\) catalyzes the anatase to rutile transformation, even at RuO\(_{2}\) contents as low as 0.001 mol. Although, from 300 to 400°C the solid solubility of RuO\(_{2}\) into rutile-TiO\(_{2}\) phase is located at \(x\le 0.3\), from 500°C that value is located in the 0.05 \(\le x < 0.1\) range. This fact could be due to the metastability of the rutile solid solutions containing ruthenium oxide above 400°C.

According to semiquantitative transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDX) analyses, at 700°C, there are compositional variations in both solid solutions, Rss and RuO\(_{2}\)ss. Thus, the system is chemically heterogeneous. The amount of Ti ions hosted into the RuO\(_{2}\) lattice in the solid solution is lower than that of Ru ions into the rutile-TiO\(_{2}\) lattice. At this temperature, the contents of these solid solutions are \(\approx\!\!17.3\) mol% RuO\(_{2}\) into the TiO\(_{2}\) lattice (the maximum value found) and around 8.0 mol% TiO\(_{2}\) (the maximum value found) into RuO\(_{2}\). The RuO\(_{2}\) volatilization can promote the segregation of the ruthenium oxide giving rise to the heterogeneity and the metastability observed in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pârvulescu V, Pârvulescu VI, Popescu G, Julbe C, Guizard C, Cot L (1995) Catal Today 25:385

  2. Guglielmi M, Colombo P, Rigato V, Battaglin G, Boscolo-Boscoletto A, DeBattisti A (1992) J Electrochem Soc 139:1655

    Google Scholar 

  3. Kameyama K, Tsukada K, Yahikozawa K, Takasu Y (1993) J Electrochem Soc 140:966

    Google Scholar 

  4. Mink J, Kristof A, De Battisti A, Daolio S, Nemeth CS (1995) Surf Sci 335:252

  5. Swider KE, Merzbacher CI, Hagans PL, Rolison DR (1997) Chem Mater 9:1248

  6. Panic VV, Dekanski A, Milonjic SK, Atanasoski RT, Nikolic BZ (1999) Colloid Surf A: Physicochem Eng. Aspects 157:269

    Google Scholar 

  7. Zhitomirsky I (1999) J Mater Sci 34:2441

    Google Scholar 

  8. Panic VV, Dekanski A, Wang G, Fedoroff M, Milonjic S, Nikolic B (2003) J Colloid Interf Sci 263:68

    Google Scholar 

  9. Aparicio M, Klein LC (2004) J Sol-Gel Sci Techn 29:81

    Google Scholar 

  10. Málek J, Watanabe A, Mitsuhashi T (2000) J Therm Anal Calorim 60:699

    Google Scholar 

  11. Colomer MT, Jurado JR (2000) Chem Mater 12:923

  12. Gerrard WA, Steele BCH (1978) J Appl Electrochem 8:417

    Google Scholar 

  13. Levedeb VM, Roginskaya YE, Klimasenko NL, Bystrov VI, Venevtsev YN (1976) Zh Neorg Khimii 21:2511

    Google Scholar 

  14. Colomer MT, Jurado JR (1998) J Solid State Chem 141:282

    Google Scholar 

  15. Pizzini S, Buzzanca G, Mari C, Rossi L, Torchio S (1972) Mater Res Bull 7:449

    Google Scholar 

  16. Trasatti S (1991) Electrochim Acta 36:225

  17. Augustynski J, Balsenic L, Hinden J (1978) J Electrochem Soc 125:1093

    Google Scholar 

  18. Lodi G, Asmundis CD, Ardizzone S, Sivieri E, Trasatti S (1981) Surf Technol 14:335

  19. Battisti AD, Lodi G, Cappadonia M, Battaglia G, Kotz R (1989) J Electrochem Soc 136:2596

    Google Scholar 

  20. Wagner W, Kuhnemund L (1989) Cryst Res Technol 24:1009

    Google Scholar 

  21. De Battisti A, Battaglin G, Benedetti A, Kristof J, Liszi J (1995) Chimia 49:17

    Google Scholar 

  22. Vallet CE, Tilak BV, Zuhr RA, Chen CP (1997) J Electrochem Soc 144:1289

    Google Scholar 

  23. Zarzycki J, Prassas M, Phalippou J (1982) J Mater Sci 17:3371

    Google Scholar 

  24. Endo A, Kajitani M, Mukaida M, Shimizu K, Sato GP (1988) Inorg Chim Acta 150:25

    Google Scholar 

  25. Pretch E, Clerc T, Seibl J, Simon W (Eds) (1988) Tablas para la elucidación estructural de compuestos org´anicos por métodos espectroscópicos, vol. I (Alhambra, Madrid) p. 135

  26. Colomer MT, Jurado JR (1997) J Non-Cryst Solids 217:48

    Google Scholar 

  27. Doeuff S, Henry M, Sanchez C, Livage J (1987) J Non-Cryst Solids 89:206

    Google Scholar 

  28. Saito K, Kido H, Nagasawa A (1990) Coord Chem Rev 100:427

    Google Scholar 

  29. Beghi M, Chiurlo P, Costa L, Palladino M, Pirini MF (1992) J Non-Cryst Solids 145:175

    Google Scholar 

  30. Bewick A, Gutiérrez C, Larramona G (1992) J Electroanal Chem 332:155

    Google Scholar 

  31. Chan HYH, Takoudis CG, Weaver MJ (1997) J Catal 172:336

    Google Scholar 

  32. Zhitormirsky I (1998) Mater Lett 33:305

  33. Veseloskaya IE, Spasskaya EK, Sololov VA, Tkachenko VI, Yakimenko LM (1974) Electrokhimiya 10:70

    Google Scholar 

  34. Hine F, Yasuda M, Yoshida T (1977) J Electrochem Soc 124:500

    Google Scholar 

  35. Ito M, Murakami Y, Kaji H, Ohkawauchi H, Yahikozawa K, Takasu Y (1994) J Electrochem Soc 141:1243

    Google Scholar 

  36. Roginskaya YE, Galyamov BS, Belova ID, Shifrina RR, Kozhevnikov VB, Bystrov VI (1982) Soviet Electrochem 18:1179

  37. Hume-Rothery W (1926) J Inst Met 35:295

    Google Scholar 

  38. Bursill LA, Hyde BG (1972) In: Reiss H, McCaldin JO (eds) Progress in solid state chemistry, vol. 7. Pergamon Oxford, p 177

  39. Tagirov VK, Chizhikov DM, Kazenas EK, Shubocchkin LK (1977) J Inorg Chem 20:1133.

    Google Scholar 

  40. Levedeb VM, Roginskaya YE, Klimasenko NL, Bystrov VI, Venevtsev YN (1976) Russ J Inorg Chem 21:1380

    Google Scholar 

  41. Belton DN, Sun YM, White JM (1984) J Phys Chem 88:5172

    Google Scholar 

  42. Daolio S, Facchin B, Pagura C, De Battisti, Barbieri A, Kristóf J (1994) J Mat Chem 4:1255

  43. Colomer MT, Valle FJ, Jurado JR (1997) Eur J Solid State Inorg Chem 34:85

    Google Scholar 

  44. Sheinkman AI, Tymentsev VA, Fotiev AA (1984) Inorg Mater 20:1460

  45. Gouma PI, Mills MJ (2001) J Am Ceram Soc 84:619

    Google Scholar 

  46. Magneli A (1970) In: Eyring L, O'Keefe M (eds) The chemistry of extended defects in non-metallic crystals. North Holland, Amsterdam, p 148

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Colomer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colomer, M.T., Velasco, M.J. & Jurado, J.R. Synthesis and thermal evolution of TiO2-RuO2 xerogels. J Sol-Gel Sci Technol 39, 211–222 (2006). https://doi.org/10.1007/s10971-006-8207-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-006-8207-z

Keywords

Navigation