Skip to main content
Log in

Electrochromism of NiO-TiO2 sol gel layers

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Films of NiO-TiO2 with Ni concentration of 100, 90, 87, 83, 75, 66, 50 and 33 mol% have been obtained via the sol-gel route by dip coating technique and sintered in air between 250 and 500°C using ethanolic sols of nickel acetate tetrahydrate (Ni(CH3COO)2·4H2O) and titanium n-propoxide (Ti(O-CH(CH3)2)4) precursors. Xerogels obtai- ned by drying the sols have been studied up to 900°C by thermal analysis (DTA/TG) coupled to mass and IR spectroscopy. The crystalline structure and morphology of the layers in the as deposited, bleached and colored states were determined by X-ray diffractometry, scanning electron microscopy and transmission electron microscopy Their electrochromic properties have been studied in 1 M KOH aqueous electrolyte as a function of the layer composition, thickness and sintering temperature. Deep brown colour with reversible transmittance changes have been obtained using cycling voltammetry and chronoamperometry processes. The best composition to get stable sols, a high reversible transmittance change and fast switching times (<10 s) was obtained with double NiO-TiO2 layers 160 nm thick having 75% Ni molar concentration, and sintered between 300 and 350°C. The mechanism of coloration and morphology transformation of the layer during cycling are discussed in terms of an activation and degradation period. The results are in agreement with the accepted Bode model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avendano E, Azens A, Niklasson GA, Granqvist CG (2004) Solar Energy Materials and Solar Cells 84:337

    Article  CAS  Google Scholar 

  2. Granqvist CG (1995) Handbook of inorganic electrochromic materials. Elsevier, The Netherlands

    Google Scholar 

  3. Fantini MCA, Bezerra GH, Carvalho CRC, Gorenstein A (1991) SPIE Optical Material Technology for Energy Efficiency and Solar Energy Conversion 1:1536

    Google Scholar 

  4. Passerini S, Scrasati B, Gorenstein A, Andersson AM Granqvist CG (1989) J Electrochem Soc 136:3394

    Article  CAS  Google Scholar 

  5. Svensson JSEM, Granqvist CG (1986) Applied Physics Letters 49:1566

    Article  CAS  Google Scholar 

  6. Gorenstein A, Decker E, Fantini M, Estrada W (1990) SPIE Institutes for Advanced Optical Technologies IS-4:272

    Google Scholar 

  7. Estrada W, Andersson AM, Granqvist CG (1988) Journal of Applied Physics 64:3678

    Article  CAS  Google Scholar 

  8. Bouessay I, Rougier A, Beaudion B, Leriche JB (2002) Applied Physics 186:4901

    Google Scholar 

  9. Agrawal A, Habibi HR, Agrawal RK, Cronin JP, Robert DM, Caron-Popowich RS, Lampert CM (1992) Thin Solid Films 221:239

    Article  CAS  Google Scholar 

  10. Morisaki S, Kawakami K, Baba N (1988) Japanese Journal of Applied Physics Part I 27:314

    Article  CAS  Google Scholar 

  11. Ezhof BB, Malandin OG (1991) Journal of the Electrochemical Society 138:885

    Article  Google Scholar 

  12. Maruyama T, Arai S (1993) Solar Energy materials and Solar Cells 30:257

    Article  CAS  Google Scholar 

  13. Surca A, Orel B, Pihlar B, Bukovec P (1996) Journal of Electroanalytical Chemistry 408:83

    Article  CAS  Google Scholar 

  14. Sharma PK, Fantini MCA, Gorenstein A (1998) Solid State Ionic, Diffusion & Reaction 457:113

    Google Scholar 

  15. Surca A, Orel B, Pihlar B (1997) Journal of Sol-Gel Science and Technology 8:743

    Article  CAS  Google Scholar 

  16. Korosec RC, Bukovec P, Pihlar B, Surca A, Orel B, Drazic G, Solid State Ionic 165:191

  17. Korosec RC, Bukovec P (2004) Thermochimica Act 410:65

    Article  CAS  Google Scholar 

  18. Garcia-Miquel JL, Zhang Q, Allen SJ, Rougier A, Blyr A, Davies HO, Jones AC, Leedham TJ, Williams PA, Impey SA (2003) Thin Solid Films 424:165

    Article  CAS  Google Scholar 

  19. Lopez DS (2003) Diploma Thesis, Leibniz-Institut für Neue Materialien, Saarbruecken, Germany

  20. Martini M, Brito GES, Fantini MCA, Craievich AF, Gorenstein A (2001) Electrochemica Acta 46:2275

    Article  CAS  Google Scholar 

  21. Moser FH, Lyman NR, Method for deposition of electrochromic layers. United States Patent, Appl. No. 016663

  22. Park J-Y, Ahn K-S, Nah Y-C, Shim H-S (2004) Journal of Sol-Gel Science and Technology 31:323

    Article  CAS  Google Scholar 

  23. Surca A, Orel B, Cerc-Korosec R, Bukovec P, Pihlar B, Journal of Electroanalytical Chemistry 443:57

  24. Svegel F, Orel B, Kaucic V (2000) Solar Energy 86:523

    Article  Google Scholar 

  25. Lambert CM, Omstead TR, Yu PC (1986) Proc Soc Photo-Opt Instrum Eng 562:16

    Google Scholar 

  26. Carpenter MK, Conell RS, Corrigan DA (1987) Sol Energy Mater 16:333

    Article  CAS  Google Scholar 

  27. Nagai J (1993) Solar Energy Materials and Solar Cells 31:291

    Article  CAS  Google Scholar 

  28. Azens A, Kullman L, Vaivars G, Nordborg H, Granqvist CG (1998) Solid State Ionic 113–115:449–456

    Article  Google Scholar 

  29. Passerini S, Scrosati B (1994) J Electrochem Soc 141:1025

    Article  CAS  Google Scholar 

  30. Bode H, Dehmelt K, Witte J (1966) Electrochimica Acta 11: 1079

    Article  CAS  Google Scholar 

  31. Baudry P, Rodrigues ACM, Aegerter MA (1990) Journal of Non-Crystalline Solids 121:319

    Article  CAS  Google Scholar 

  32. Bhargava R, Levin W (2004) Applied Spectroscopy 58:995

    Article  CAS  Google Scholar 

  33. Nam K-W, Kim K-B (2002) Journal of Electrochem Soc 149:A364

    Google Scholar 

  34. De Jesus JC, Gonzalez I, Quevedo A, Puerta T (2005) Journal of Molecular Catalyst A Chemical 228:283

    Article  CAS  Google Scholar 

  35. Ferreiraa FF, Tabacniksa MH, Fantini MCA, Fariab IC, Gorenstein A (1996) Solid State Ionics 86–88:971

    Article  Google Scholar 

  36. Wu Y, He Y, Chen T, Weng W, Wan H (2005) Materials Letters 59:3106

    Article  CAS  Google Scholar 

  37. Fantini M, Gorenstein A (1987) Solar Energy Materials 16:487

    Article  CAS  Google Scholar 

  38. Avendano E (2004) Electrochromism in Nickel-based oxides, Thesis, University of Uppsala, Finland

  39. Serebrennikova I, Birss VI (1997) Journal of Electrochem Soc 144, 566

    Article  CAS  Google Scholar 

  40. Bouessay I, Rougier A, Poizot P, Moscovici J, Michalowicz A, Tarascon J-M (2005) Electrochemica Acta 50: 3737

    Article  CAS  Google Scholar 

  41. Scarminio J, Estrada W, Andersson A, Gorenstein A, Decker F (1992) J Electrochem Soc 139:1236

    Article  CAS  Google Scholar 

  42. Al-kahlout A, Aegerter MA, submitted

  43. Bouessay I, Rougier A, Tarascon J-M (2004) J Electrochem Soc 151:H145

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Al-Kahlout.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Kahlout, A., Heusing, S. & Aegerter, M.A. Electrochromism of NiO-TiO2 sol gel layers. J Sol-Gel Sci Technol 39, 195–206 (2006). https://doi.org/10.1007/s10971-006-7746-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-006-7746-7

Keywords

Navigation