Skip to main content
Log in

Phase evolution of sol-gel CaO-ZrO2 using sulfuric acid as hydrolysis catalyst

  • Original Article
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Several compositions in the CaO-ZrO2 system were synthesized from zirconium n-butoxide and calcium methoxide, by the sol-gel method. Hydrolysis and gelation occurred at pH 3, using H2SO4 as hydrolysis catalyst. Fresh gels were annealed in air at 100 to 900°C, in 100°C steps every 20 h, for a total annealing time of 140 h. Analysis by X-ray diffraction showed the formation of hydrated calcium sulfate together with amorphous zirconia up to 400°C. At the ZrO2 rich-end, tetragonal and monoclinic zirconia solid solutions were stabilized in the presence of Ca ions. When 20 and 30 wt% of CaO were added, cubic zirconia and CaZrO3 solid solutions were observed above 700°C. At the CaO rich-end, the coexistence of calcium carbonate polymorphs as vaterite and calcite were observed. Anhydrite was present across the entire range of compositions studied from 300 to 900°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.H. Kisi, Zirconia Engineering Ceramics, Key Eng. Mater. 153–154, 1 (1998).

    Google Scholar 

  2. R. Stevens, Zirconia and Zirconia Ceramics, (Magnesium Elektron Pub., 1986), no. 133.

  3. B. Basu, J. Vleugels, and O. Van der Biest, Mater. Sci. Eng. A366, 338 (2004).

    CAS  Google Scholar 

  4. S. Huang, L. Li, J. Vleugels, P. Wang, and O. Van der Biest, J. Eur. Ceram. Soc. 23, 99 (2003).

    Google Scholar 

  5. M. Chatterjee, A. Chatterjee, and D. Ganguli, Ceram. Int. 18, 43 (1992).

    CAS  Google Scholar 

  6. M. Bosetti, E. Verne, M. Ferraris, A. Ravaglioli, and M. Cannas, Biomater. 22, 987 (2001).

    Article  CAS  Google Scholar 

  7. A.H. De Aza, J. Chevalier, G. Fantozzi, M. Schehl, and R. Torrecillas, Biomater. 23, 937 (2002).

    Google Scholar 

  8. R.V. Gaines, H.C.W. Skinner, E.E. Foord, B. Mason, and A. Rosenzweig, Dana's New Mineralogy 8th Ed. (John Wiley & Sons, USA, 1997).

    Google Scholar 

  9. P. Ball, Made to Measure, New Materials for the 21STCentury (Princeton Univ. Press, U.K., 1997).

  10. M. Maciejewski, H.-R. Oswald, A. Reller, Termochim. Acta 234, 315 (1994).

    Article  CAS  Google Scholar 

  11. B. Cheng, M. Lei, J. Yu, and X. Zhao, Mater. Lett. 58, 1565 (2004).

    CAS  Google Scholar 

  12. G. Tari and J.M.F. Ferreira, Ceram. Int. 24, 527 (1998).

    Article  CAS  Google Scholar 

  13. H. Ohgushi, M. Okamura, T. Yoshikawa, and K. Inoue, J. Bio. Mater. Res. 26, 885 (1992).

    CAS  Google Scholar 

  14. K. Tanabe, G. Zhang, and H. Hattori, Appl. Catal. 48, 63 (1988).

    Google Scholar 

  15. J. Garcia, T. Lopez, R. Gomez, D.H. Aguilar, and P. Quintana, J. Sol-Gel Sci. Technol. 32, 333 (2004).

    Article  CAS  Google Scholar 

  16. P.D.L. Mercera, J.G. Van Ommen, E.B.M. Doesburg, A.J. Burggraaf, and J.R.H. Ross, Appl. Catal. 57, 127 (1990).

    CAS  Google Scholar 

  17. ICCD-PDF, International Center for Diffraction Data (ICDD) Powder Diffraction File (PDF) (Pennsylvania, USA, 2000).

  18. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, 1978).

    Google Scholar 

  19. Rietica computer program developed by C.J. Howard and B.A. Hunter, L. Heights Research Laboratories, Australia, 1997.

  20. V.S. Stubican, J.R. Hellmann, and S.P. Ray, Mater. Sci. Monogr. 10, 257 (1982).

    CAS  Google Scholar 

  21. E.V. Stefanovich, A.L. Shluger, and C.R.A. Catlow, Phys. Rev. B 49, 11560 (1994).

    Google Scholar 

  22. R.C. Garvie, J. Phys.Chem. 82, 218 (1978).

    Article  CAS  Google Scholar 

  23. M. Kitamura, J. Colloid Interface Sci. 236, 318 (2001).

    Article  CAS  Google Scholar 

  24. L. Xiang, Y. Xiang, Y. Wen, and F. Wei, Mater. Lett. 58, 959 (2004).

    CAS  Google Scholar 

  25. A. Schwartz, D. Eckart, J. O'Connell, and K. Francis, Mater. Res. Bull. 6, 1341 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Quintana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, J., Quintana, P., Aguilar, D.H. et al. Phase evolution of sol-gel CaO-ZrO2 using sulfuric acid as hydrolysis catalyst. J Sol-Gel Sci Technol 37, 185–188 (2006). https://doi.org/10.1007/s10971-005-6626-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-005-6626-x

Keywords

Navigation