Skip to main content
Log in

Sol–Gel Derived Organic and Inorganic Hybrid Materials for Photonic Applications: Contribution to the Correlation Between the Material Structure and the Transmission in the Near Infrared Region

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A promising way of fabricating integrated optics components is based on the sol–gel synthesis and photocuring of organic-inorganic hybrid materials. However, the main factor limiting the development of passive devices is the propagation losses. Moreover, the possibility to compensate these attenuations by optical amplification is competed with the multiphonon relaxation associated to the presence of OH groups. To our knowledge, OH groups were always shown as the main responsible for attenuation at the telecommunication wavelengths, namely at 1310 and 1550 nm, although the matrix is composed of organic species which can contribute to absorptions in this spectral range. This paper deals with spectroscopic and optical characterizations of a well established organic and inorganic hybrid material in order to determine the contribution of each molecular groups to the attenuation at the aforementioned wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Coudray, P. Etienne, and Y. Moreau, J. Porque, Opt. Comm. 143(4–6), 199 (1997).

    Google Scholar 

  2. B.T. Stone and K.L. Bray, J. Non-Cryst. Solids 197, 136 (1996).

    Google Scholar 

  3. Y. Zhou, Y.L. Lam, S.S. Wang, H.L. Liu, C.H. Kam, and Y.C. Chan, Appl. Phys. Lett. 71, 587 (1997).

    Google Scholar 

  4. C. Strohhöfer, S. Capecci, J. Fick, A. Martucci, G. Brusatin, and M. Guglielmi, Thin Solid Films 326, 99 (1998).

    Google Scholar 

  5. E.M. Yeatman, M.M. Ahmad, O. McCarty, A. Vannucci, P. Gastaldo, D. Barbier, D. Mongardien, and C. Moronvalle, Opt. Comm. 164, 19 (1999).

    Google Scholar 

  6. C.B. Layne, W.H. Lowdermilk, and M.J. Weber, Phys. Rev. B 16, 10 (1977).

    Google Scholar 

  7. C.J. Brinker and G.W. Scherrer, Sol–Gel Science (Academic Press, San Diego, CA, 1990).

    Google Scholar 

  8. P. Coudray, P. Etienne, and Y. Moreau, Mater. Sci. Semicond. Proc. 3(5/6), 331 (2000).

    Google Scholar 

  9. P. Etienne, P. Coudray, J. Porque, and Y. Moreau, Opt. Mat. 174(5/6), 413 (2000).

    Google Scholar 

  10. M. Popall, R. Buestrich, F. Kahlenberg, A. Adersson, J. Haglund, M.E. Robertsson, G. Blau, M. Gale, O. Rösch, A. Dabek, J. Neumann-Rodekirch, L. Cergel, and D. Lambert, Mater. Res. Soc. Symp. Proc. 628, CC9.8.1 (2000).

    Google Scholar 

  11. M. Popall, A. Dabek, M.E. Robertsson, S. Valizadeh, O.J. Hagel, R. Buestrich, R. Nagel, L. Cergel, D. Lambert, and M. Schaub, Mol. Cryst. 354, 123 (2000).

    Google Scholar 

  12. R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, J. Sol–Gel Sci. Technol. 20, 181 (2001).

    Google Scholar 

  13. A. Vioux, Chem. Mater 9, 2292 (1997).

    Google Scholar 

  14. R. Buestrich, F. Kahlenberg, M. Popall, A. Martin, and O. Rösch, Mater. Res. Soc. Symp. Proc. 628, CC 9.8.1 (2000).

    Google Scholar 

  15. M. Mennig, M. Zahnhaussen, and H. Schmidt, Proc. SPIE 3469, 68 (1998).

    Google Scholar 

  16. M. Oubaha. M. Smaïhi, P. Etienne, P. Coudray, and Y. Moreau, J. Non-Cryst. Solids 318, 305 (2003).

    Google Scholar 

  17. H. Krug, F. Teillantes, P.W. Oliviers, and H. Schmidt, Proc. SPIE 1758, 448 (1992).

    Google Scholar 

  18. M.G. Fonseca, A.S. Oliveira, and C. Airoldi, J. Colloid Interf. Sci. 240(2), 533 (2001).

    Google Scholar 

  19. R.L. Ballard, J.P. Williams, J.M. Njus, B.R. Kiland, and M.D. Soucek, Europ. Polym. J. 37(2), 381 (2001).

    Google Scholar 

  20. P.H. Mutin, G. Guerrero, and A. Vioux, C.R. Chimie 6, 1153 (2003).

    Google Scholar 

  21. G. Guerrero, P. H. Mutin, and A. Vioux, J. Mater. Chem. 3161 (2001).

  22. G. Guerrero, P.H. Mutin, and A. Vioux, Chem. Mater. 12(5), 1268 (2000).

    Google Scholar 

  23. G. Guerrero, PhD Thesis, Montpellier, 2000.

  24. H. Marsmann, Oxygen-17 and Silicon-29 NMR Spectroscopy (Springer, Berlin, 1981).

    Google Scholar 

  25. T. Jermoumi, M. Smaïhi, and N. Hovnanian, J. Mater. Chem. 5(8), 1203 (1995).

    Google Scholar 

  26. Y. Sugahara, S. Okada, S. Sato, K. Kuroda, and C. Kato, J. Non-Cryst. Solids 167, 21 (1994).

    Google Scholar 

  27. Y. Sugahara, S. Okada, S. Sato, K. Kuroda, and C. Kato, J. Non-Cryst. Solids 139, 25 (1992).

    Google Scholar 

  28. L. Bois, PhD Thesis, Paris VI, 1993.

  29. F. Babonneau, and J. Maquet, Polyhedron 19, 315 (2000).

    Google Scholar 

  30. J. Livage and C. Sanchez, J. Non-Cryst. Solids 145, 11 (1992).

    Google Scholar 

  31. D. Li Ou and A.B. Seddon, J. Non- Cryst. Solids, 210, 187. (1997)

    Google Scholar 

  32. S. Calas, PhD Thesis, Montpellier, 1997.

  33. H. Shroeder, Physics of Thin Solid Films (Academic Press, N.Y.5, 87, 1969).

    Google Scholar 

  34. F. Bissuel, PhD Thesis, Montpellier, 1996.

  35. M.C. Gonçalves and R.M. Almeida, J. Non-Cryst. Solids 194, 180 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oubaha, M., Etienne, P., Calas, S. et al. Sol–Gel Derived Organic and Inorganic Hybrid Materials for Photonic Applications: Contribution to the Correlation Between the Material Structure and the Transmission in the Near Infrared Region. J Sol-Gel Sci Technol 33, 241–248 (2005). https://doi.org/10.1007/s10971-005-5619-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-005-5619-0

Keywords

Navigation