Skip to main content
Log in

27Al NMR Study of Al-Speciation in Aqueous Alumina-Sols

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A new method of preparing concentrated alumo-sols, the hydrolysis of Al-tri-sec-butylate in acidic aqueous media at 85°C, was studied in detail by varying the H2O/Al- and NO3 /Al-ratios in wide ranges. The components of the sols were characterized by 27Al NMR spectroscopy. The pH-value depends on both the chosen H2O/Al- and NO3 /Al-ratio and on the aging time of the sols and reflects the composition of the sols. Al13 polycations were detected in sols with a pH-value between 3.0 and 3.7. As a new result its presence was shown by NMR below 3.4. The Al13 content of the sols increased with pH and the maximum fraction of Al13 polycations was detected in the sol with the highest pH (3.7). Nearly 65% of the entire aluminium content of this solution is bound in the Al13 polycations. Hence, a new synthetic method for the preparation of Al13 ions containing sols was developed.

Aging studies of the sols showed, that the Al13 polycations were more stable in solutions with higher pH-value. Al13 polycations were detected after an aging time of four months only in sols with a pH-value of 3.7. Tempering the aged sols at 40° to 80°C caused formation of Al13 and also of Al30 polycations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Masalski, J. Gluszek, J. Zabrzeski, K. Nitsch, and P. Gluszek, Thin Solid Films 349, 186 (1999).

    Article  CAS  Google Scholar 

  2. R. Hauk, G.H. Frischat, and K. Ruppert, Glastech. Ber. Glass Sci. Technol. 72, 386 (1999).

    CAS  Google Scholar 

  3. I. Tsarenko, S. Park, H. Du, and W.Y. Lee, J. Am. Ceram. Soc. 86, 1622 (2003).

    Article  CAS  Google Scholar 

  4. B.E. Yoldas, Amer. Ceram. Soc. Bull. 54, 286 (1975).

    CAS  Google Scholar 

  5. B.E. Yoldas, J. Mat. Sci. 10, 856 (1975).

    Article  Google Scholar 

  6. D.E. Clark, W.J. Dalzell Jr., and B.L. Adams, US Patent 4,801,399 (1989).

    Google Scholar 

  7. S. Reinsch, M. Dreßler, M. Nofz, J. Pauli, Ch. Jäger, and G. Scholz, Proceedings GEFTA-Jahrestagung (Augsburg, Germany, 2003).

    Google Scholar 

  8. S. Reinsch, M. Dreßler, M. Nofz, J. Pauli, Ch. Jäger, and G. Scholz, Proceedings, GEFTA-Jahrestagung (Braunschweig, Germany, 2004).

  9. M. Wang and M. Muhammed, NanoStructured Materials 11, 1219 (1999).

    Article  CAS  Google Scholar 

  10. C.J. Brinker and G. W. Scherer, Sol-Gel Science (Academic Press, San Diego, 1990).

  11. J.Y. Bottero, J.M. Cases, F. Flessinger, and J.E. Poirer, J. Phys. Chem. 84, 2933 (1980).

    Article  CAS  Google Scholar 

  12. J.T. Kloprogge, D. Seykens, J.B.H. Jansen, and J.W. Geus, J. Non-Cryst. Solids 142, 94 (1992).

    Article  CAS  Google Scholar 

  13. J.-Y. Bottero, M. Axelos, D. Tchoubar, J.M. Cases, J.J. Fripiat, and F. Fiessinger, J. Colloid Interface Sci. 117, 47 (1987).

    Article  CAS  Google Scholar 

  14. A. Masion, F. Thomas, D. Tchoubar, J.Y. Bottero, and P. Tekely, Langmuir 10, 4353 (1994).

    Article  CAS  Google Scholar 

  15. A. Masion, F. Thomas, J.-Y. Bottero, D. Tchoubar, P. Tekely, J. Non-Cryst. Solids 171, 191 (1994).

    Article  CAS  Google Scholar 

  16. L. Allouche, C. Gerardin, T. Loiseau, G. Ferey, and F. Taulelle, Angew. Chem. 112, 521 (2000).

    Article  Google Scholar 

  17. L. Allouche and F. Taulelle, Inorg. Chem. Commun. 6, 1167 (2003).

    Article  CAS  Google Scholar 

  18. L.F. Nazar, D.G. Napier, D. Lapham, and E. Epperson, Mat. Res. Soc. Symp. Proc. 180, 117 (1990).

    CAS  Google Scholar 

  19. S. Bi, Ch. Wang, Q. Cao, and C. Zhang, Coordination Chem. Rev. 248, 441 (2004).

    Article  CAS  Google Scholar 

  20. C.C. Perry and K.L. Shafran, J. Inorg. Biochem. 87, 115 (2001).

    Article  CAS  Google Scholar 

  21. T.E. Wood, A.R. Siedle, J.R. Hill, R.P. Skarjune, and C.J. Goodbrake, Mat. Res. Soc. Symp. Proc. 180, 97 (1990).

    CAS  Google Scholar 

  22. M.T. Pope, Heteropoly and Isopoly Oxometalates (Springer-Verlag, New York, 1983).

    Google Scholar 

  23. G. Fu, L.F. Nazar, and A.D. Bain, Chem. Mater. 3, 602 (1991).

    Article  CAS  Google Scholar 

  24. L.-O. Öhmann and U. Edlund, in Enzyklopedia of Nuclear Magnetic Resonace edited by D.M. Grant, R.K. Harris, Vol. 1 (Wiley, 2002), p. 742.

  25. U.N. Yamaguchi, S. Diradate, and M. Mizoguchi, 17th WCSS, 14–21 August 2002, Thailand, Symposium no.08, Paper no. 959.

  26. D. Tchoubar and J.-Y. Bottero, C. R. Acad. Sci. Paris, 322, serie IIa, 523 (1996).

    CAS  Google Scholar 

  27. R. Bertram, W. Geßner, and D. Müller, Z. Chem. 26, 340 (1986).

    CAS  Google Scholar 

  28. L. Bonhomme-Coury, F. Babonneau, and J. Livage, J., J. Sol-Gel Sci. Technol. 3, 157 (1994).

    Article  CAS  Google Scholar 

  29. S.L. Wang, M.K. Wang, and Y.M. Tzou, Colloids and Surfaces A: Physicochem. Eng. Aspects 231, 142 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nofz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nofz, M., Pauli, J., Dressler, M. et al. 27Al NMR Study of Al-Speciation in Aqueous Alumina-Sols. J Sol-Gel Sci Technol 38, 25–35 (2006). https://doi.org/10.1007/s10971-005-5546-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-005-5546-0

Keywords

Navigation