Skip to main content
Log in

Photochromic Gratings in Sol-Gel Hybrid Materials Containing Cyanoazobenzene Chromophores

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The photochromic sol-gel hybrid materials containing cyanoazobenzene chromophores were described. These materials were obtained by copolycondensation of the functionalized triethoxysilane and tetraethoxysilane precursor. They were deposited on glass substrates via spin coating and casting techniques to provide thin transparent films. The UV-vis spectroscopy showed reversibility of the trans-cis photoisomerization of the chromophoric fragments. The reversible change of refractive index of the films on illumination with white light was determined by ellipsometry. The difference of real part of the refractive index of the sample was in the range 0.0053–0.0075. Formation of diffraction grating was achieved by two beam coupling arrangement using a 532 nm laser. The diffraction efficiency for the first order diffraction was in the range of 2–3.5%. The kinetics of photochromic grating recording and erasing was described by biexponential function approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Levy, Chemistry of Materials 9, 2666 (1997).

    Article  CAS  Google Scholar 

  2. B. Lebeau and C. Sanchez, Current Opinion in Solid State and Materials Science 4, 11 (1999).

    Article  CAS  Google Scholar 

  3. R. Nakao, N. Ueda, Y. Abe, T. Horii, and H. Inoue, Polymers for Advanced Technologies 7, 863 (1996).

    Article  CAS  Google Scholar 

  4. R. Reisfeld, Optical Materials 16, 1 (2001).

    CAS  Google Scholar 

  5. Q. Wang and B. Yan, Journal of Materials Research 20, 592 (2005).

    CAS  Google Scholar 

  6. Q. Wang and B. Yan, Journal of Materials Chemistry 14, 2450 (2004).

    CAS  Google Scholar 

  7. H. Schmidt, Journal of Non-Crystalline Solids 73, 681 (1985).

    Article  CAS  Google Scholar 

  8. P. Prosposito and M. Casalboni, “Optical Properties of Functionalized Sol-Gel-Derived Hybrid Materials”, in Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites, Volume 1: Hybrid Materials, edited H.S. Nalwa (American Scientific Publishers, 2003), p. 83.

  9. F. Chaput, D. Riehl, Y. Levy, and J.P. Boilot, Chemistry of Materials 5, 589 (1993).

    Article  CAS  Google Scholar 

  10. B. Darracq, F. Chaput, K. Lahlil, J.P. Boilot, Y. Levy, V. Alain, L. Ventelon, and M. Blanchard-Desce, Optical Materials 9, 265 (1998).

    Article  CAS  Google Scholar 

  11. G.H. Hsiue, W.J. Kuo, C.H. Lin, and R.J. Jeng, Macromolecular Chemistry and Physics 201, 2336 (2000).

    Article  CAS  Google Scholar 

  12. B. Darracq, M. Canva, F. Chaput, J.P. Boilot, D. Riehl, Y. Levy, and A. Brun, Applied Physics Letters 70, 292 (1997).

    Article  CAS  Google Scholar 

  13. S. Kawata, and Y. Kawata, Chemical Reviews 100, 1777 (2000).

    Article  CAS  Google Scholar 

  14. R. Marino, P.P. Bersani, and I.-G. Lottici, Optical Materials 15, 279 (2001).

    Article  CAS  Google Scholar 

  15. R. Marino, P.P. Bersani, and I.-G. Lottici, Optical Materials 15, 175 (2000); R. Raschella, R. Marino, I.-G. Lottici, P.P. Bersani, A. Lorenzi, and A. Montenero, Optical Materials 25, 419 (2004).

    Google Scholar 

  16. J. Peretti, J. Biteau, J.P. Boilot, F. Chaput, V.I. Safarov, J.M. Lehn, and A. Fernandez-Acebes, Applied Physics Letters 74, 1657 (1999).

    Article  CAS  Google Scholar 

  17. R. Loucif-Saibi, K. Nakatani, J. Delaire, M. Dumont, and Z. Sekkat, Chemistry of Materials 5, 229 (1993).

    Article  CAS  Google Scholar 

  18. J.J.A. Couture, and R.A. Lessard, Applied Optics 27, 3368 (1988).

    CAS  Google Scholar 

  19. T. Huang, and K.H. Wagner, Journal of the Optical Society of America A 10, 306 (1993).

    CAS  Google Scholar 

  20. L. Nikolova, T. Todorov, N. Tomova, and V. Dragostinova, Applied Optics 27, 1598 (1988).

    CAS  Google Scholar 

  21. G.S. Kumar and D.C. Neckers, Chemical Reviews 89, 1915 (1989).

    Article  CAS  Google Scholar 

  22. J.A. Delaire and K. Nakatani, Chemical Reviews 100, 1817 (2000).

    Article  CAS  Google Scholar 

  23. P.-A. Blanche, Ph.C. Lemaire, C. Maertens, P. Dubois, and R. Jerome, Journal of the Optical Society of America B 17, 729 (2000).

    CAS  Google Scholar 

  24. R. Janik, S. Kucharski, A. Kubainska, and B. Lyko, Polish Journal of Chemistry 75, 241 (2001).

    CAS  Google Scholar 

  25. R.J. Jeng, Y.M. Chen, A. Jain, J. Kumar, and S.K. Tripathy, Chemistry of Materials 4, 972 (1992).

    CAS  Google Scholar 

  26. D.H. Choi, K.J. Cho, Y.K. Cha, and S.J. Oh, Bulletin of the Korean Chemical Society 21, 1222 (2000).

    CAS  Google Scholar 

  27. E. Ortyl, and S. Kucharski, Central European Journal of Chemistry 2, 137 (2003).

    Google Scholar 

  28. R.M.A. Azzam, and N.M. Bashara, Ellipsometry and Polarized Light (North Holland Press, Amsterdam 1977, 2nd Edition 1987).

  29. S. Kucharski, and R. Janik, Optical Materials 27, 1637 (2005).

    Article  CAS  Google Scholar 

  30. A. Natansohn, P. Rochon, J. Gosselini, and S. Xie, Macromolecules 25, 2268 (1992).

    CAS  Google Scholar 

  31. P. Rochon, D. Bissonnette, A. Natansohn, and S. Xie, Applied Optics 32, 7277 (1993).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kucharski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serwadczak, M., Kucharski, S. Photochromic Gratings in Sol-Gel Hybrid Materials Containing Cyanoazobenzene Chromophores. J Sol-Gel Sci Technol 37, 57–62 (2006). https://doi.org/10.1007/s10971-005-5156-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-005-5156-x

Keywords

Navigation