Skip to main content
Log in

Preparation of Titania/PDMS Hybrid Films and the Conversion to Porous Materials

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Transparent films of titania/poly(dimethylsiloxane) (PDMS) hybrids were prepared by the solvent evaporation from the precursor solution prepared by the co-hydrolysis and co-condensation of titanium tetraisopropoxide and a methoxy-functionalized PDMS. The hybrid films were flexible and had high homogeneity of the composition. The organic groups of PDMS were decomposed at 400°C in air to form porous films. Though the heated films were rather brittle compared to the as-synthesized films, they were still transparent and homogeneous. The BET surface areas of the films after the heat treatment at 400°C were over 300 m2/g, while the as-synthesized hybrid films were non porous. According to the BDDT classification, the nitrogen adsorption/desorption isotherms of the calcined films were Type I, showing that the films were microporous. The titania domains were still amorphous after the heat treatment at 400°C and transformed to anatase after the heat treatment at 1,000°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Brinker and G.W. Sherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press Inc., San Diego, 1990).

  2. R.J. Davis and Z. Liu, Chem. Mater. 9, 2311 (1997).

    Article  CAS  Google Scholar 

  3. Z. Liu and R.J. Davis, J. Phys. Chem. 98, 1253 (1994).

    CAS  Google Scholar 

  4. C.M. Whang and S.S. Lim, Bull. Korean Chem. Soc. 21, 1181 (2000).

    CAS  Google Scholar 

  5. Z. Ding, G.Q. Lu, and P.F. Greenfield, J. Phys. Chem. B 104, 4815 (2000).

    Article  CAS  Google Scholar 

  6. H.Y. Zhu, J.A. Orthman, J.-Y. Li, J.-C. Zhao, G.J. Churchman, and E.F. Vansant, Chem. Mater. 14, 5037 (2002).

    CAS  Google Scholar 

  7. M. Ogawa, K. Ikeue, and M. Anpo, Chem. Mater. 13, 2900 (2001).

    Article  CAS  Google Scholar 

  8. Y. Abe, N. Sugimoto, Y. Nagano, and T. Misono, J. Non-Cryst. Solids 104, 164 (1988).

    Article  CAS  Google Scholar 

  9. J.B. Miller, S.T. Johnson, and E.I. Ko, J. Catalysis 150, 311 (1994).

    Article  CAS  Google Scholar 

  10. E. Lotero, D. Vu, C. Ngyuen, J. Wagner, and G. Larsen, Chem. Mater. 10, 3756 (1998).

    Article  CAS  Google Scholar 

  11. W. Que, Z. Sun, Y.L. Lam, Y.C. Chan, and C.H. Kam, J. Phys. D: Appl. Phys. 34, 471 (2001).

    Article  CAS  Google Scholar 

  12. J. Sterte, Clays and Clay Miner. 34, 658 (1986).

    Article  CAS  Google Scholar 

  13. S. Yamanaka, T. Nishiyama, M. Hattori, and Y. Suzuki, Mater. Chem. Phys. 17, 87 (1987).

    CAS  Google Scholar 

  14. Z. Ding, H.Y. Zhu, G.Q. Lu, and P.F. Greenfield, J. Colloid. and Interface Sci. 209, 193 (1999).

    Article  CAS  Google Scholar 

  15. M. Nakade, K. Kameyama, and M. Ogawa, J. Mater. Sci. 39, 4131 (2004).

    Article  CAS  Google Scholar 

  16. M. Nakade, K. Ichihashi, and M. Ogawa, J. Porous Mater. 12, 79 (2005).

    Google Scholar 

  17. H. Schmidt, J. Non-Cryst. Solids 178, 302 (1994).

    Article  CAS  Google Scholar 

  18. M.S. Lee and N.J. Jo, J. Sol-Gel Sci. Technol. 24, 175 (2002).

    CAS  Google Scholar 

  19. M.A. LaPack, J.C. Tou, V.L. McGuffin, and C.G. Enke, J. Membr. Sci. 86, 263 (1994).

    Article  CAS  Google Scholar 

  20. N.M. Jose, L.A.S.A. Prado, and I.V.P. Yoshida, J. Polym. Sci. Part B: Polymer Physics 42, 4281 (2004).

    Article  CAS  Google Scholar 

  21. S. Dirè, E. Pagani, R. Ceccato, and G. Carturan, J. Mater. Chem. 7, 919 (1997).

    Google Scholar 

  22. N. Yamada, I. Yoshinaga, and S. Katayama, J. Sol-Gel Sci. Technol. 17, 123 (2000).

    Article  CAS  Google Scholar 

  23. T. Shindou, S. Katayama, N. Yamada, and K. Kamiya, J. Sol-Gel Sci. Technol. 27, 15 (2003).

    Article  CAS  Google Scholar 

  24. T. Shindou, S. Katayama, N. Yamada, and K. Kamiya, J. Sol-Gel Sci. Technol. 30, 229 (2004).

    Article  CAS  Google Scholar 

  25. B. Wang and G.L. Wilkes, J. Polym. Sci.: Part A: Polym. Chem. 29, 905 (1991).

    CAS  Google Scholar 

  26. E.P. Barrett, L.G. Joyner, and P.P. Halenda, J. Am. Chem. Soc. 73, 373 (1951).

    Article  CAS  Google Scholar 

  27. (a) A. Lee Smith, Spectrochim. Acta 16, 87 (1960), (b) A. Lee Smith, Spectrochim. Acta 19, 849 (1963), (c) A. Lee Smith, Analysis of Silicones (Krieger Publishing Company, Florida, 1984)

  28. B. Wang, A.B. Brennan, H. Huang, and G.L. Wilkes, J. Macromol. Sci.-Chem. A27, 1477 (1990).

    Google Scholar 

  29. J.B. Miller, L.J. Mathers, and E.I. Ko, J. Mater. Chem. 5, 1759 (1995).

    CAS  Google Scholar 

  30. S. Dirè, R. Campostrini, and R. Ceccato, Chem. Mater. 10, 268 (1998).

    Google Scholar 

  31. G. Larsen, M. Buechler-Skoda, C. Nguyen, D. Vu, and E. Lotero, J. Non-Cryst. Solids 279, 161 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ogawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakade, M., Ichihashi, K. & Ogawa, M. Preparation of Titania/PDMS Hybrid Films and the Conversion to Porous Materials. J Sol-Gel Sci Technol 36, 257–264 (2005). https://doi.org/10.1007/s10971-005-4510-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-005-4510-3

Keywords

Navigation