Skip to main content
Log in

Preparation and Properties of Aramid-Silica Hybrids with Inter-Phase Bonding Through (3-glycidoxypropyl)-trimethoxysilane

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nano-composites from aramid-silica system have been prepared via sol-gel process. Poly (phenyleneterephthalamide) copolymer chains were prepared by reacting a mixture of p- and m-phenylenediamines with terephthaloyl chloride in dimethylacetamide used as solvent. The sol-gel process in the polymer matrix was carried out through hydrolysis and condensation of a mixture of tetraethoxysilane and (3-glycidoxypropyl) trimethoxysilane. The latter was used to develop linkage, on one hand with silica network structure using alkoxy groups and on the other hand with aramid chains at its secondary amine groups through glycidal groups of silane. Mutual interaction between the two disparate phases aramid and silica network was thus created. Thin films of the composites containing different proportions of silica ranging from 5.0 to 25.0-wt% were cast by the solvent elution technique. The α-relaxation temperature associated with the glass transition was measured by the dynamic mechanical thermal analysis. The results showed an increase in the glass transition temperature from 328°C for the pure aramid to 352°C for the hybrid materials containing 25-wt% silica, an indicative of the increased interfacial interaction between the two phases. Films having relatively low silica content were flexible and transparent, but those with high silica content were opaque and brittle. These films were tested for their tensile strength, modulus and toughness. The mechanical strength of the composites as compared to the pure aramid increased initially but with further addition of silica the strength decreased. The initial increase can be explained due to increased interfacial interaction between the two phases, however agglomeration of silica particles was responsible for decreasing strength at higher silica contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Ahmad, The Encyclopedia of Materials; Science and Technology, sec. 5, ch. 10, (Elsevier Science 2001).

  2. S.H. Li, in Advanced Structural Materials, Y. Han (Ed.), (Elsevier, Amsterdam, 1991).

  3. Z. Ahmad, M.I. Sarwar, S. Wang, and J.E. Mark, Polymer 17, 4523 (1997).

    Google Scholar 

  4. H.U. Rehman, M.I. Sarwar, Z. Ahmad, H. Krug, and H. Schmidt, J. Non-Cryst. Solids 211, 105 (1997).

    Article  CAS  Google Scholar 

  5. Z. Ahmad, M.I. Sarwar, and J.E. Mark, J. Mater. Chem. 7, 259 (1997).

    Article  CAS  Google Scholar 

  6. J.D. Mackenzie, J. Sol-Gel Sci. Technol. 26, 23 (2003).

    Article  CAS  Google Scholar 

  7. D.R. Uhlmann and G. Teowee, J. Sol-Gel Sci. Technol. 13, 153 (1998).

    Article  CAS  Google Scholar 

  8. C.J. Brinker, Better Ceramics Through Chemistry (Material Research Society: Pittsburgh, PA. 1986, 1988).

  9. C.J. Brinker and G.W. Scherer, Sol-Gel Science (Academic Press: New York, 1990).

  10. M. Messori, M. Toselli, F. Pilati, L. Mascia, and C. Tonelli, Euro. Polym. J. 38, 1129 (2002).

    Article  CAS  Google Scholar 

  11. C. Xenopoulos, L. Mascia, and S.J. Shaw, J. Mater. Chem. 12, 213 (2002).

    Article  CAS  Google Scholar 

  12. B.M. Novak, Adv. Mater. 5, 422 (1993).

    Article  CAS  Google Scholar 

  13. T. Kato, A. Sugawara, and N. Hosoda, Adv. Mater. 14, 869 (2002).

    Article  CAS  Google Scholar 

  14. B. Wang, G.L. Wilkes, J.C. Hedrick, B.C. Liptak, and J.E. McGrath, Macromolecules 24, 3449 (1991).

    CAS  Google Scholar 

  15. J.D. Mackenzie, Q. Huang, and T. Iwamoto, J. Sol-Gel. Sci. Technol. 7, 151 (1996).

    Article  CAS  Google Scholar 

  16. A.B. Wojcik and L.C. Klein, J. Sol-Gel. Sci. Technol. 4, 57 (1995).

    Article  CAS  Google Scholar 

  17. H.M. Ding, M.K. Ram, and C. Nicolini, J. Nanosci. Nanotech. 1, 207 (2001).

    CAS  Google Scholar 

  18. Z. Ahmad and J.E. Mark, Chem. Mater. 13, 3320 (2001).

    Article  CAS  Google Scholar 

  19. T. Caykara and O. Guven, Polym. Comp. 19, 193 (1998).

    CAS  Google Scholar 

  20. M.I. Sarwar and Z. Ahmad, Euro. Polym. J. 36, 89 (2000).

    Article  CAS  Google Scholar 

  21. Z. Ahmad and J.E. Mark, Mater. Sci. Eng. C6, 183 (1998).

    CAS  Google Scholar 

  22. Z. Ahmad, M. I. Sarwar, and J.E. Mark, J. Appl. Polym. Sci. 70, 297 (1998).

    Article  CAS  Google Scholar 

  23. Z. Ahmad, S. Wang, and J.E. Mark, Polym. Prepr. 34, 745 (1993).

    CAS  Google Scholar 

  24. P. Innocenzi, M. Esposto, and A. Maddalena, J. Sol-Gel Sci. Technol. 20(3), 293 (2001).

    Article  CAS  Google Scholar 

  25. S.R. David, A.R. Brough, and A. Atkinson, J. Non-Cryst. Solids 315(1), 197 (2003)

    Google Scholar 

  26. W. Que, Q.Y. Zhang, Y.C. Chan, and C.H. Kam, Composite Sci. Technol. 63(3), 347 (2003)

    Article  CAS  Google Scholar 

  27. W. Que and X. Hu, J. Sol-Gel Sci. Technol. 28(3), 319 (2003)

    Article  CAS  Google Scholar 

  28. C.J. Brinker and G.W. Scherer, J. Non-Cryst. Solids 70, 301 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain, H., Rehman, H.U. & Ahmad, Z. Preparation and Properties of Aramid-Silica Hybrids with Inter-Phase Bonding Through (3-glycidoxypropyl)-trimethoxysilane. J Sol-Gel Sci Technol 36, 239–248 (2005). https://doi.org/10.1007/s10971-005-4508-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-005-4508-x

Keywords

Navigation