Skip to main content
Log in

A Study on the Influences of Processing Parameters on the Growth of Oxide Nanorod Arrays by Sol Electrophoretic Deposition

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Template-based sol electrophoretic deposition has been demonstrated as an attractive method for the synthesis of oxide nanorod arrays, including simple and complex oxides in the forms of amorphous, polycrystalline, and single crystal. This paper systematically studied a number of processing parameters to control nanorod growth by sol electrophoretic deposition. The influences of particle and template zeta potentials, condensation rate, deposition rate (or externally applied electric field), the presence of organic additives, and sol concentration on the growth of nanorod arrays were studied. It was found that higher zeta potential or electric field resulted in higher growth rates but less dense packing. Templates with charge opposite to that of the sol particles prevented formation of dense nanorods, sometimes resulting in nanotubes, depending on the field strength during electrophoresis. In addition, the pH of the sol and chelating additives were also varied and likely affected the deposition process by affecting the condensation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.Z. Cao, Nanostructures and Nanomaterials: Synthesis, Properties, and Applications (Imperial College Press, London, 2004).

  2. C.M. Lieber, Solid State Comm. 107, 607 (1998).

    CAS  Google Scholar 

  3. Y. Xia, P. Yang, Y. Sun, B. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15, 353 (2003).

    CAS  Google Scholar 

  4. G.R. Patzke, F. Krumeich, and R. Nesper, Angew. Chem. Int. Ed. 41, 2447 (2002).

    Article  Google Scholar 

  5. G.Z. Cao, J. Phys. Chem. B108, 19921 (2004).

    Google Scholar 

  6. Y. Lin, G.S. Wu, X.Y. Yuan, T. Xie, and L.D. Zhang, J Phys.-Condens. Mat. 15, 2917 (2003).

    CAS  Google Scholar 

  7. S.J. Limmer, S.V. Cruz, and G.Z. Cao, Appl. Phys. A79, 421 (2004).

    CAS  Google Scholar 

  8. K. Takahashi, S.J. Limmer, Y. Wang, and G.Z. Cao, Jpn. J. Appl. Phys. 44B, 662 (2005).

    Google Scholar 

  9. S.J. Limmer and G.Z. Cao, Adv. Mater. 15, 427 (2003).

    Article  CAS  Google Scholar 

  10. S.J. Limmer, S. Seraji, M.J. Forbess, Y. Wu, T.P. Chou, C. Nguyen, and G.Z. Cao, Adv. Mater. 13, 1269 (2001).

    Article  CAS  Google Scholar 

  11. S.J. Limmer, S. Seraji, Y. Wu, T.P. Chou, C. Nguyen, and G.Z. Cao, Adv. Funct. Mater. 12, 59 (2002).

    Article  CAS  Google Scholar 

  12. S.J. Limmer, T.P. Chou, and G.Z. Cao, J. Mater. Sci. 39, 895 (2004).

    Article  CAS  Google Scholar 

  13. R.J. Hunter, Zeta Potential in Colloid Science (Academic Press, London, 1981).

    Google Scholar 

  14. A. Navarro, J.R. Alcock, and R.W. Whatmore, J. Eur. Ceram. Soc. 24, 1073 (2004).

    Article  CAS  Google Scholar 

  15. J. Ma, R. Zhang, C.H. Liang, and L. Weng, Mater. Lett. 57, 4648 (2003).

    CAS  Google Scholar 

  16. C. Lettmann, D. Möckel, and E. Staude, J. Membrane Sci. 159, 243 (1999).

    Article  CAS  Google Scholar 

  17. K.S. Seshadri, R. Kesavamoorthy, M.P. Srinivasan, K. Varatharajan, J. Ahmed, and V. Krishnasamy, B. Electrochem. 14, 16 (1998).

    CAS  Google Scholar 

  18. Y.C. Wang, I.C. Leu, and M.H. Hon, J. Mater. Chem. 12, 2439 (2002).

    CAS  Google Scholar 

  19. B.B. Lakshmi, P.K. Dorhout, and C.R. Martin, Chem. Mater. 9, 857 (1997).

    CAS  Google Scholar 

  20. K.J. Kim, A.G. Fane, M. Nyström, and A. Pihlajamaki, J. Membrane Sci. 134, 199 (1997).

    Article  CAS  Google Scholar 

  21. C. Lettmann, D. Möckel, and E. Staude, J. Membrane Sci. 159, 243 (1999).

    Article  CAS  Google Scholar 

  22. M. Kosmulski, Langmuir 13, 6315 (1997).

    Article  CAS  Google Scholar 

  23. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physical and Chemistry of Sol-Gel Processing (Academic Press, Boston, 1990).

    Google Scholar 

  24. R.K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (John Wiley & Sons, New York, NY, 1979).

    Google Scholar 

  25. C. Sanchez, J. Livage, M. Henry, and F. Babonneau, J. Non-Cryst. Solids 100, 65 (1988).

    Article  CAS  Google Scholar 

  26. S. Barboux-Doeuff and C. Sanchez, Mat. Res. Bull. 29, 1 (1994).

    Article  CAS  Google Scholar 

  27. R. Nass and H. Schmidt, J. Non-Cryst. Solids 121, 329 (1990).

    CAS  Google Scholar 

  28. T. Nishide and F. Mizukami, Thin Solid Films 259, 212 (1995).

    Article  CAS  Google Scholar 

  29. N. Tohge, E. Fujii, and T. Minami, J. Mater. Sci.-Mater. El. 5, 356 (1994).

    CAS  Google Scholar 

  30. A. Leaustic, F. Babonneau, and J. Livage, Chem. Mater. 1, 248 (1989).

    CAS  Google Scholar 

  31. P. Papet, N. Le Bars, J.F. Baumard, A. Lecomte, and A. Dauger, J. Mater. Sci. 24, 3850 (1989).

    Article  CAS  Google Scholar 

  32. M. Sedlar and M. Sayer, J. Sol-Gel Sci. Tech. 5, 27 (1995).

    CAS  Google Scholar 

  33. S. Basu and K.K. Chatterji, Z. Phys. Chem. (Leipzig) 209, 360 (1958).

    CAS  Google Scholar 

  34. K. Yamasaki, K. Sone, Nature 166, 998 (1950).

    CAS  Google Scholar 

  35. J. Selbin, Chem. Rev. 65, 153 (1965).

    Article  CAS  Google Scholar 

  36. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd (ed.) (John Wiley & Sons, New York, 1978).

  37. Y.-C. Wang, I.-C. Leu, and M.-H. Hon, Electrochem. Solid St. 5, C53 (2002).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Z. Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Limmer, S.J., Chou, T.P. & Cao, G.Z. A Study on the Influences of Processing Parameters on the Growth of Oxide Nanorod Arrays by Sol Electrophoretic Deposition. J Sol-Gel Sci Technol 36, 183–195 (2005). https://doi.org/10.1007/s10971-005-3548-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-005-3548-6

Keywords

Navigation