Skip to main content
Log in

Pore Structure Simulation of Gels with a Binary Monomer Size Distribution

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The pore size distribution in silica gels can be tailored by the addition of silica soot particles during the gel formation. We introduce a numerical model in order to simulate the structure of this “composite gel”. The algorithm is based on Diffusion-Limited Cluster-Cluster Aggregation model with an initial binary distribution of monomer sizes. The textural properties of the simulated gels are calculated using a simple triangulation method. Nitrogen adsorption-desorption experiments show that with the powder addition the mean pore size is shifted towards larger pore size and the specific surface area decreases. Numerical results of the mean pore size, specific surface area, and particles are in good agreement with experimental data. Because of these textural properties this new type of gels and aerogels has larger permeability and interesting properties as host matrix. The composite gels and the numerical model could also be helpful to simulate the natural allophanic gel found in volcanic soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gronauer and J. Fricke, Acustica 59, 169 (1986).

    Google Scholar 

  2. G.A. Nicolaon and S.J. Teichner, Bull. Soc. Chim. France 5, 1906 (1968); US Patent No. 3, 672, 833 1972.

  3. J. Fricke, J. Non-Cryst. Solids 147/148, 356 (1992).

    Google Scholar 

  4. D.W. Schaefer and K.D. Keefer, Phys. Rev. Lett. 56, 2199 (1986).

    CAS  PubMed  Google Scholar 

  5. T. Woignier, J. Phalippou. J. Pelous, and E. Courtens, J. Non-Cryst. Solids 121, 198 (1990).

    CAS  Google Scholar 

  6. J.F. Brinker and G.W. Scherer, Sol-Gel Science (Academic Press, 1990).

  7. T. Woignier, J. Phalippou, and M. Prassas, J. Mater. Sci. 25, 3117 (1990).

    Google Scholar 

  8. S.J. Teichner, G.A. Vicarini, and G.E.E. Gardes, Adv. Coll. Interface Sci. 5, 245 (1976).

    CAS  Google Scholar 

  9. P. Tsou, J. Non-Cryst. Solids 186, 415 (1995).

    CAS  Google Scholar 

  10. J. Bouaziz, D. Bourret, and R Sempere, J. Non-Cryst. Solids 82, 225 (1986).

    CAS  Google Scholar 

  11. T. Bellini, N. Clark, and D.W. Schaefer, Phys. Rev. Lett. 74, 2740 (1995).

    CAS  PubMed  Google Scholar 

  12. S. Kralj, G. Lahajnar, A. Zidansk, N. Vrbancic, M. Vilfan, R. Blink, and M. Kosek, Phys. Rev. E. 48, 340 (1993).

    CAS  Google Scholar 

  13. T. Woignier, J. Reynes, J. Phalippou, and J.L. Dussossoy, J. Non-Cryst. Solids 225, 353 (1998).

    CAS  Google Scholar 

  14. A.B. Jarzebski, J. Lorenc, Y. Aristov, and N. Lisistza, J. Non-Cryst. Solids 190, 198 (1995).

    CAS  Google Scholar 

  15. J. Phalippou, A. Ayral, T. Woignier, M. Pauthe, J.F. Quinson, and A. Lechatelut, Europhys. Lett. 14, 249 (1991).

    CAS  Google Scholar 

  16. S.A. Pardenek, J.W. Flemming, and L.C. Klein in Ultrastructure Processing of Advanced Ceramics, edited by J.D. Mackenzie and D.R. Ulrich (N.Y. Wiley, 1988) p. 379.

  17. G.W. Scherer, S.A. Pardenek, and R.M. Swiatek, J. Non-Cryst. Solids 107(1), 14 (1988).

    CAS  Google Scholar 

  18. M.A. Einarsurd, J. Non-Cryst. Solids 225, 1 (1998).

    Google Scholar 

  19. T. Mizuno, H. Nagata, and S.J. Manabe, J. Non-Cryst. Solids 100, 236 (1988).

    CAS  Google Scholar 

  20. T. Woignier, C. Mariere, P. Dieudonne, J. Primera, M. Lamy, and J. Phalippou, J. Non-Cryst. Solids 285, 175 (2001)

    Google Scholar 

  21. M. Toki. S. Miyashita, T. Takeuchi, S. Kande, and A. Kochi. Non-Cryst. Solids 100, 479 (1988).

    CAS  Google Scholar 

  22. P. Meakin, Phys. Rev. Lett. 51, 1119 (1983).

    Google Scholar 

  23. M. Kolb, R. Botet, and R. Jullien, Phys. Rev. Lett. 51, 1123 (1983).

    Google Scholar 

  24. P. Quantin, J. Baiesdent, A. Bouleau, M. Delaune, and C .Feller, Geoderma. 50, 125 (1991)

    CAS  Google Scholar 

  25. G.W. Scherer, J. Non-Cryst. Solids 215, 155 (1997).

    CAS  Google Scholar 

  26. A. Hasmy, E. Anglaret, M. Foret, J. Pelous, and R. Jullien, Phys. Rev. B 50, 6006 (1994).

    CAS  Google Scholar 

  27. J. Primera, A. Hasmy, and T. Woignier, J. Sol-Gel Sci. Techn 26, 671 (2003)

    CAS  Google Scholar 

  28. R.K. Her, “The chemistry of silica”, Wiley N.Y. (1979)

  29. J. Reynes, T. Woignier, and J. Phalippou. J. Non-Cryst. Solids 285, 353 (2001).

    Google Scholar 

  30. G.W. Scherer, D. Smith, and D. Stein, J. Non-Cryst. Solids 186, 309 (1995).

    CAS  Google Scholar 

  31. T. Woignier, E Braudeau, J. Non-Cryst. Solids Submitted to.

  32. K.B. Wallace, Geotechnique 23(4), 203 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hasmy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Primera, J., Woignier, T. & Hasmy, A. Pore Structure Simulation of Gels with a Binary Monomer Size Distribution. J Sol-Gel Sci Technol 34, 273–280 (2005). https://doi.org/10.1007/s10971-005-2524-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-005-2524-5

Keywords

Navigation