Skip to main content
Log in

Internal Polarity of Class I and Class II Type Sol–Gel Hybrid Materials Using Aromatic Aminoketones as Solvatochromic Probes for Adsorbed Solvents and the Silicatic Cage

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

2-Hydroxyethylamino functionalized aromatic amino ketones bearing furyl and thienyl as well as 4-N, N-dimethylaminophenyl moieties have been used as solvatochromic probes when entrapped physically (Class I) and chemically bonded (Class II), respectively, to silicatic sol–gel hybrid materials. Class I hybrid materials have been obtained by encapsulation the dissolved probe during the acidically induced sol–gel procedure using various amounts of methyltrimethoxysilane and tetramethoxysilane as components. Class II xerogels have been synthesized by functionalization of the 2-hydroxyethylamino substituted aryl ketones with 3-isocyanatopropyltriethoxysilane and subsequent sol–gel process with TEOS (tetraethoxysilane). Molecular structures of the hybrid materials have been confirmed by solid-state MAS CP -29Si and -13C NMR spectroscopy.

Significant influences of the polarity of adsorbed solvents and of composition of the sol–gel material on the UV/Vis absorption spectrum of the encapsulated solvatochromic moiety are observed.

Mobility of the entrapped probe and the associated influence of the adsorbed solvent upon the probe in the pores are significantly different for the two different classes of sol–gel materials studied.

Solvatochromism of Class I xerogels shows that opposite effects of primary alcohols as function of alkyl chain length on the interfacial polarity are observed. They are caused by the influence of the internal surface modified with the solvent and origin solvent polarity on the UV/Vis spectrum of the encapsulated probe. Class II xerogels show related effects as observed for the probes studied in well behaved regular solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Philipp and H. Schmidt, J. Non-Cryst. Solids 63, 283 (1984).

    CAS  Google Scholar 

  2. H. Schmidt, in Better Ceramics through Chemistry I, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (Elsevier Science, New York, 1984), p. 327.

  3. Y. Kobayashi, Y. Kurukawa, Y. Imai, and S. Muto, J. Non-Cryst. Solids 105, 198 (1988).

    CAS  Google Scholar 

  4. C.J. Brinker and G.W. Scherer, Sol–Gel Science (Academic Press, New York, 1989).

    Google Scholar 

  5. (a) B. Boury and R.J.P. Corriu, Adv. Mat. 12, 989 (2000); (b) R.J.P. Corriu, Angew. Chem. 112, 1433 (2000).

  6. E.T. Knobbe, B. Dunn, P.D. Fuqua, and F. Vishida, Appl. Optics 29, 2729 (1990).

    CAS  Google Scholar 

  7. Y. Haruvy and S. Webber, Chem. Mater. 3, 501 (1991).

    CAS  Google Scholar 

  8. E. Toussaere, J. Zyss, P. Griesmar, and C. Sanchez, Nonlinear Opt. 1, 349 (1991).

    CAS  Google Scholar 

  9. J.Y. Ding, M.R. Shahriari, and G.H. Siegel, Electron Lett. 27, 1560 (1991).

    CAS  Google Scholar 

  10. J.D. MacKenzie, Sol–Gel Optics II, eds. (Proc. SPIE, 1758, 1992).

  11. H.-T. Lin, E. Bescher, J.D. MacKenzie, and H. Dai, J. Mater. Sci. 27, 5523 (1992).

    Google Scholar 

  12. Y. Zhang, N. Prasad, and R. Burzynski, Chem. Mater. 4, 851 (1992).

    CAS  Google Scholar 

  13. R.J. Jeng, Y.M. Chen, A.K. Jain, J. Kumar, and S.K. Tripathy, Chem. Mater. 4, 972 (1992).

    CAS  Google Scholar 

  14. C. Claude, B. Garetz, Y. Okamota, and S.J. Tripathy, Mater. Lett. 14, 336 (1992).

    CAS  Google Scholar 

  15. R.J. Jeng, Y.M. Chen, A.K. Jain, J. Kumar, and S.K. Tripathy, Chem. Mater. 4, 1141 (1992).

    CAS  Google Scholar 

  16. J. Kim, J.L. Plawsky, R. LaPeruta, and G.M. Korenowski, Chem. Mater. 4, 249 (1992).

    CAS  Google Scholar 

  17. C. Rottman, M. Ottolenghi, R. Zusman, O. Lev, M. Smitz, G. Gong, M.L. Kagan, and D. Avnir, Mater. Lett. 13, 293 (1992).

    CAS  Google Scholar 

  18. J. Kim, J.L. Plawsky, E. Van Wagenen, and G.M. Korenowski, Chem. Mater. 5, 1118 (1993).

    CAS  Google Scholar 

  19. J.L. Lenhart, J.H. van Zanten, J.P. Dunkers, C.G. Zimba, C.A. James, S.K. Pollack, and R.S. Parnas, J. Colloid Interface Sci. 221, 75 (2000).

    CAS  PubMed  Google Scholar 

  20. M.M.E. Severin-Vantik and E.W.I.L. Oomen, J. Non-Cryst. Solid 159, 38 (1993).

    Google Scholar 

  21. B.M. Novak, Adv. Mater. 5, 422 (1993).

    CAS  Google Scholar 

  22. B. Lebeau, J. Maquet, C. Sanchez, E. Toussaere, R. Hierle, and J. Zyss, J. Mater. Chem. 4, 1855 (1994).

    CAS  Google Scholar 

  23. J. Samuel, A. Strinkovski, S. Shalom, K. Lieberman, M. Ottolenghi, D. Avnir, and A. Lewis, Mater. Lett. 21, 431 (1994).

    CAS  Google Scholar 

  24. B.M. Kubeckova, M. Pespisilova, and V. Matejee, J. Sol–Gel Sci. Technol. 2, 513 (1994).

    Google Scholar 

  25. Q. Hibben, E. Lu, Y. Haruvy, and S.E. Webber, Chem. Mater. 6, 761 (1994).

    CAS  Google Scholar 

  26. Z. Yang, C. Xu, B. Wu, L.R. Dalton, S. Kalluri, W.H. Steier, Y. Shi, and J.H. Bechtel, Chem. Mater. 6, 1899 (1994).

    CAS  Google Scholar 

  27. L.C. Klein, Sol–Gel Optics: Processing and Applications (Kluwer Academic Press, Boston, 1994).

    Google Scholar 

  28. C. Sanchez and F. Ribot, New J. Chem. 18, 1007 (1994).

    CAS  Google Scholar 

  29. D. Avnir, Acc. Chem. Res. 28 (8), 330 (1995).

    Google Scholar 

  30. H.W. Oviatt, K.J. Shea, S. Kalluri, Y. Shi, W. Steier, and L.R. Dalton, Chem. Mater. 7, 493 (1995).

    CAS  Google Scholar 

  31. L.R. Dalton, A.W. Harper, R. Ghosn, W.H. Steier, M. Ziari, H. Fetterman, Y. Shi, R.V. Mustacich, A.K.-Y. Jen, and K.J. Shea, Chem. Mater. 7, 1060 (1995).

    CAS  Google Scholar 

  32. K. Yagi, S. Shibata, T. Yano, A. Yasumor, M. Yamane, and B. Dunn, J. Sol–Gel Sci. Tech. 4, 67 (1995).

    CAS  Google Scholar 

  33. D. Reihl, F. Chaput, Y. Levy, J.-P. Boilot, F. Kajzar, and P.A. Chollet, Chem. Phys. Lett. 245, 36 (1995).

    Google Scholar 

  34. B. Lebeau, C. Sanchez, S. Brasselet, J. Zyss, G. Froc, and M. Dumont, New J. Chem. 20, 13 (1996).

    CAS  Google Scholar 

  35. C. Sanchez and B. Lebeau, Pure Appl. Opt. 5, 689 (1996).

    CAS  Google Scholar 

  36. C.K. Jorgensen and R. Reisfeld, Optical and Electronic Phenomena in Sol–Gel Glasses and Modern Application (Springer, New York, 1996).

    Google Scholar 

  37. B. Lebeau, S. Brasselet, J. Zyss, and C. Sanchez, Chem. Mater. 9, 1012 (1997).

    CAS  Google Scholar 

  38. F. Del Monte and D. Levy, J. Sol–Gel Sci. Technol. 8, 585 (1997).

    CAS  Google Scholar 

  39. L. Hou, H. Schmidt, B. Hoffmann, and M. Menning, J. Sol–Gel Sci. Technol. 8, 923 (1997).

    CAS  Google Scholar 

  40. J.D. Mackenzie and P.E. Bescher, J. Sol–Gel Sci. Technol. 13, 371 (1998).

    CAS  Google Scholar 

  41. Y.H. Min, D.S. Lee, C.S. Youn, and L.M. Do, J. Mater. Chem. 8, 1225 (1998).

    CAS  Google Scholar 

  42. P. Lavin, C.M. Mcdonagh, and B.D. Maccraith, J. Sol–Gel Sci. Technol. 13, 641 (1998).

    CAS  Google Scholar 

  43. C.M. Mcdonagh, A.M. Shields, A.K. Mcevoy, B.D. Maccraith, and J.F. Gouin, J. Sol–Gel Sci. Technol. 13, 207 (1998).

    CAS  Google Scholar 

  44. H. Nakashima, and M. Irie, Macromol. Chem. Phys. 200, 683 (1999).

    CAS  Google Scholar 

  45. C. Gojon, B. Duréault, N. Hovaman, and C. Guizard, J. Sol–Gel Sci. Technol. 14, 163 (1999).

    CAS  Google Scholar 

  46. H. Jiang and A.K. Kakkar, J. Am. Chem. Soc. 121, 3657 (1999).

    CAS  Google Scholar 

  47. B. Dunn and J.I. Zink, Chem. Mater. 9, 2280 (1997).

    CAS  Google Scholar 

  48. H.K. Kim, S.J. Kang, S.K. Choi, Y.H. Min, and C.S. Yoon, Chem. Mater 11, 779 (1999).

    CAS  Google Scholar 

  49. Q.Y. Zhang and Z.H. Jiang, J. Mater. Sci. Technol. 15, 563 (1999).

    CAS  Google Scholar 

  50. K.J. Shea and D.A. Loy, Chem. Mater. 13, 3306 (2001).

    CAS  Google Scholar 

  51. G. Schottner, Chem. Mater. 13, 3422 (2001).

    CAS  Google Scholar 

  52. M.M. Collinson, Microchim. Acta 129, 149 (1998).

    CAS  Google Scholar 

  53. B. Boury and R.J.P. Corriu, Chem. Commun. 795 (2002).

  54. A. Ibanez, S. Maximov, A. Guiu, C. Chaillot, and P.L. Baldeck, Adv. Mat. 10, 847 (1998).

    Google Scholar 

  55. (a) S. Spange and D. Keutel, Liebigs Ann. Chem. 423 (1992); (b) M. El-Sayed, H. Müller, G. Rheinwald, H. Lang, and S. Spange, J. Phys. Org. Chem. 14, 247 (2001); (c) S. Spange, M. El-Sayed, H. Müller, G. Rheinwald, H. Lang, and W. Poppitz, Eur. J. Org. Chem. 24, 4159 (2002).

  56. M. El-Sayed, H. Müller, G. Rheinwald, H. Lang, and S. Spange, Chem. Mater. 15, 746 (2003).

    CAS  Google Scholar 

  57. (a) S. Spange and A. Reuter, Langmuir 15, 141 (1999); (b) Y. Zimmermann, M. El-Sayed, S. Prause, and S. Spange, Monatsh. Chem. 132, 1347 (2001); (c) Y. Zimmermann, S. Anders, K. Hofmann, and S. Spange, Langmuir 18, 9578 (2002).

  58. (a) M.J. Kamlet, J.L. Abboud, M.H. Abraham, and R.W. Taft, J. Org. Chem. 48, 2877 (1983); (b) M.J. Kamlet, J. Prog. Org. Chem. 19, 295 (1993).

  59. (a) C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 2nd edn. (Wiley-VCH, Weinheim, 1988); (b) C. Reichardt, Chem. Rev. 94, 2319 (1994).

  60. M.H. Abraham, H.S. Chadha, G.S. Whiting, and R.C. Mitchell, J. Pharm. Sci. Soc. 83, 1085 (1994).

    CAS  Google Scholar 

  61. F. Besseau, M. Lucon, C. Laurence, and M. Berthelot, J. Chem. Soc., Perkin Trans. 2, 101 (1998).

    Google Scholar 

  62. G.A. Baker, J.D. Jordan, and F.V. Bright, J. Sol–Gel Sci. Techn. 11, 43 (1998).

    CAS  Google Scholar 

  63. (a) C. Rottman, G.S. Grader, Y.D. Hazan, and D. Avnir, Langmuir 12, 5505 (1996); (b) C. Rottman, G.S. Grader, and D. Avnir, Chem. Mater. 13, 3631 (2001).

  64. S. Marturunkakul, J.I. Chen, R.J. Jeng, S. Sengupta, J. Kumar, and S.K. Tripathy, Chem. Mater. 5, 743 (1993).

    CAS  Google Scholar 

  65. J.E. Mark, C. Lee, and P.A. Biancon, Hybrid Organic-Inorganic composites, ACS Symposium Series 585 (American Chemical Society, Washington, 1995).

    Google Scholar 

  66. Y. Marcus, Chem. Soc. 409 (1993).

  67. (a) G.E. Maciel and D.W. Sindorf, J. Am. Chem. Soc. 102, 7606 (1980); (b) D.W. Sindorf, and G.E. Maciel, J. Am. Chem. Soc. 105, 1848 (1983).

  68. C. Wies, K. Meise-Gresch, W.Müller-Warmuth, W. Beier, A.A.Göktas, and G.H. Frischat, Ber. Bunsenges. Phys. Chem. 92, 689 (1988).

    CAS  Google Scholar 

  69. M. Pursch, L.C. Sander, and K. Albert, Anal. Chem. News & Features 733A (1999).

  70. J.F. Haw, T. Xu, J.B. Nicholas, and P.W. Goguen, Nature 389, 832 (1997).

    CAS  Google Scholar 

  71. (a) S. Spange, Y. Zimmermann, and A. Gräser, Chem. Mater. 11, 3245 (1999); (b) Y. Zimmermann and S. Spange, J. Phys. Chem. B 106, 12524 (2002).

  72. D.D. Perrin and W.L.F. Armarego, Purification of Laboratori Chemicals, 3rd edn. (Pergamon Press, Oxford, 1988).

    Google Scholar 

  73. K. Schwetlick, et al. Organikum-Organisch-chemisches Grundpraktikum, 21st edn. (Wiley-VCH, Weinheim, 2001) chapter F, p. 741.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Spange.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Sayed, M., Seifert, A. & Spange, S. Internal Polarity of Class I and Class II Type Sol–Gel Hybrid Materials Using Aromatic Aminoketones as Solvatochromic Probes for Adsorbed Solvents and the Silicatic Cage. J Sol-Gel Sci Technol 34, 77–94 (2005). https://doi.org/10.1007/s10971-005-1265-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-005-1265-9

Keywords

Navigation