Skip to main content
Log in

Influence of Film Structure and Precursor Composition on Rhodamine B Retention in Dye-Dopped Ormosils

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The interplay between the chemical structure of the precursors, internal organization in the end materials and dye retention was investigated for composites (ormosils) doped with rhodamine B. Besides formulations with triethoxysilanes (RTES) only, we synthesized as well organic–inorganic hybrids with addition of titanium isopropoxide (TIP) and maleic anhydride (MA). The organic (R) functionality of RTES was changed from methyl (MeTES), to phenyl (PTES) and octyl (OTES). Atomic force microscopy and electron microscopy, coupled with thermogravimetric analysis prove that hydrophobicity increase stimulates the transition of film structure: from well-defined, compact particles (for MeTES), to a mixture of porous particles and non-granular material (for MeTES/PTES), with extreme results observed for octyl-based composites. For this latter, the apparent homogeneity comes from cluster-like organization, where the primary entities are ‘pseudo—granules’ produced by hydrophobic interactions of oligomeric siloxanes. Controlling the composition and gelation procedure resulted in doped composites with good optical transparency and rhodamine B fluorescence emission bands at around 580 nm. Dye transport inside the inorganic structure is not facilitated when: (a) the particles have a compact (nonporous) inner structure and (b) the recipe does not contain the TIP/MA combination. For silica-based films, the dye is located in the macropores (between the granules) of the material and could be easy removed by washing with acetone. On the contrary, using TIP/MA changes not only the internal composition of the granular-like material (by creating a microporous titania-rich outer-shell of the particles) but also the affinity of the Rh-B to permeate and reside inside these new structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Reisfeld, R. Zusman, Y. Cohen, and M. Eyal, Chem. Phys. Lett. 147, 142 (1988).

    CAS  Google Scholar 

  2. M. Guglielmi, P. Colombo, L. Mancinelli Degli Esposti, G.C. Righini, S. Pelli, and V. Rigato, J. Non-Cryst. Solids 147, 641 (1992).

    Google Scholar 

  3. M. Canva, G.L. Sanx, P. Georges, A. Brun, F. Chaput, and J.P. Boilot, Opt. Lett. 17, 218 (1992).

    CAS  Google Scholar 

  4. F. Bentivegna, M. Canva, P. Georges, A. Brun, F. Chaput, and J.P. Boilot, Appl. Phys. Lett. 62, 1721 (1993).

    CAS  Google Scholar 

  5. M. Casalboni, R. Senesi, P. Prosposito, F.D. Matteis, and R. Pizzoferrato, Appl. Phys. Lett. 70, 2969 (1997).

    CAS  Google Scholar 

  6. R. Reisfeld, E. Yariv, and H. Minti, Opt. Mater. 8, 31 (1997).

    CAS  Google Scholar 

  7. G.H. Hsiue, R.H. Lee, and R.J. Jeng, Chem. Mater 9, 883 (1997).

    CAS  Google Scholar 

  8. T. Suratwala, Z. Gardlund, K. Davidson, and R.H. Uhlmann, J. Sol-Gel Sci. Tech. 8, 973 (1997).

    CAS  Google Scholar 

  9. J. Lenhart, J.H. Vanzanten, J.P. Dunkers, and R.S. Parnas, Langmuir 16, 8145 (2000).

    CAS  Google Scholar 

  10. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).

    Google Scholar 

  11. D. Avnir, S. Braun, and M. Ottolenghi, in Supramolecular Arhitecture: Synthetic Control in Thin Films and Solids, edited by T. Bein, ACS Symp. Ser. 499, 1992, p. 389.

  12. E.J.A. Pope, J. Sol-Gel Sci. Tech. 2, 717 (1994).

    CAS  Google Scholar 

  13. N. Wttouck, F. De Schryver, and I. Snykers-Hendrickx, J.Sol-Gel Sci. Tech. 8, 895 (1997).

    Google Scholar 

  14. H. Nakazumi, K. Makita, and R. Nagashiro, J. Sol-Gel Sci. Tech. 8, 901 (1997).

    CAS  Google Scholar 

  15. L. Hou, B. Hoffman, M. Mennig, and H. Schmidt, J.Sol-Gel Sci. Tech. 2, 635 (1994).

    CAS  Google Scholar 

  16. K. Mongey, J.G. Vos, B.D. Macraith, and C.M. McDonagh, J. Sol-Gel Sci. Tech. 8, 979 (1997).

    CAS  Google Scholar 

  17. R. Litran, E. Blanco, M. Ramirez-del-Solar, and L. Esquivias, J. Sol-Gel Sci. Tech. 8, 985 (1997).

    CAS  Google Scholar 

  18. J. Garcia, V.M. Castano, M.A. Mondragon, E. Ramirez, F. Gonzalez, A. Campero, and V. Renteria, J. Sol-Gel Sci. Tech. 8, 911 (1997).

    Google Scholar 

  19. T. Schibata, M. Yamane, K. Kamada, K. Ohta, K. Sasaki, and H. Masuhara, J. Sol-Gel Sci. Tech. 8, 959 (1997).

    Google Scholar 

  20. L. Matthews, D. Avnir, A. Modestov, S. Sampath, and O. Lev, J. Sol Gel Sci. Tech. 8, 619 (1997).

    CAS  Google Scholar 

  21. X.M. Han, J. Lin, R.B. Xing, J. Fu, and S.B. Wang, Mater. Lett. 57, 1355 (2003).

    CAS  Google Scholar 

  22. A.V. Deshpande and U. Kumar, J. Non-Cryst. Solids 306, 149 (2002).

    CAS  Google Scholar 

  23. X. Hao, X. Fan, Z. Wang, and M. Wang, Mater. Lett. 51, 245 (2001).

    CAS  Google Scholar 

  24. H. Yanagi, T. Hishiki, T. Tobitani, A. Otomo, and S. Mashiko, Chem. Phys. Lett. 292, 332 (1998).

    CAS  Google Scholar 

  25. T. Seckin, A. Gultek, and S. Kartaca, Dyes and Pigments 56, 51 (2003).

    CAS  Google Scholar 

  26. Y. Yang, M. Wang, G. Qian, Z. Wang, and X. Fan, Opt. Mat. 24, 621 (2004).

    CAS  Google Scholar 

  27. K.O. van der Werf, C.A.J. Putman, B.G. de Grooth, F.B. Segerink, E.H. Schipper, N.F. van Hulst, and J. Greve, Rev. Sci. Instrum. 64(10), 2892 (1993).

    Google Scholar 

  28. J.C. Berg in Wettability (Marcel Dekker Inc., New York, 1993), Chap. 2.

    Google Scholar 

  29. C.J. van Oss, R.J. Good, and N.K. Chaudhury, Langmuir 4, 884 (1988).

    CAS  Google Scholar 

  30. M. Montes, F.P. Getton, M.S.W. Vong, and P.A. Sermon, J. Sol Gel Sci. Tech. 8, 131 (1997).

    CAS  Google Scholar 

  31. R.M. Almeida and E.E. Christensen, J. Sol Gel Sci. Techn. 8, 409 (1997).

    CAS  Google Scholar 

  32. K.M.S. Khalil, A.A. Elsamahy and M.S. Elanany, J. Coll. Interf. Sci. 249, 359 (2002).

    CAS  Google Scholar 

  33. R. Jones, H.M. Pollock, and D. Geldart, A. Verlinden, Powder Tech. 132(2-3), 196 (2003).

    CAS  Google Scholar 

  34. I. Lopez Arbeloa and P. Ruiz Ojeda, Chem. Phys. Lett. 79, 47 (1981).

    Google Scholar 

  35. I. Lopez Arbeloa and K.K. Rohatgi-Mukherjee, Chem. Phys. Lett. 28, 474 (1986).

    Google Scholar 

  36. D. Hinckley, P.G. Seybold, and D.P. Borris, Spectrochim. Acta 42A, 747 (1986).

    CAS  Google Scholar 

  37. A. Imhof, M. Megens, J.J. Engelberts, D.T.N. de Lang, R. Sprik, and W.L. Vos, J. Phys. Chem. B 103, 1408 (1999).

    CAS  Google Scholar 

  38. R. Tamaki and Y. Chujo, 37-th Int.Symp. Macromol., Gold Coast, Australia, Preprints, 1998, p. 278.

  39. D.L. Ou and A.B. Seddon, J. Non-Cryst. Solids 210, 187 (1997).

    CAS  Google Scholar 

  40. D.L. Ou and A.B. Seddon, J. Sol-Gel Sci. Tech. 8, 139 (1997).

    CAS  Google Scholar 

  41. W. Que, Z. Sun, Y. Zhou, Y.L. Lam, Y.C. Chan and C.H. Kam, Thin Sol. Films 359, 177 (2000).

    CAS  Google Scholar 

  42. L. Frunza, H. Kosslick, U. Bentrup, I. Pitsch, R. Fricke, S. Frunza and A. Schonhals, J. Mol. Struct. 651653, 341 (2003).

    Google Scholar 

  43. P. Madhu Kumar, S. Badrinarayanan, and M. Sastry, Thin Sol. Films 358, 122 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violeta I. Uricanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uricanu, V.I., Donescu, D., Banu, A.G. et al. Influence of Film Structure and Precursor Composition on Rhodamine B Retention in Dye-Dopped Ormosils. J Sol-Gel Sci Technol 34, 23–39 (2005). https://doi.org/10.1007/s10971-005-1259-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-005-1259-7

Keywords

Navigation