Skip to main content

Advertisement

Log in

The impact of structural genomics: the first quindecennial

  • Published:
Journal of Structural and Functional Genomics

Abstract

The period 2000–2015 brought the advent of high-throughput approaches to protein structure determination. With the overall funding on the order of $2 billion (in 2010 dollars), the structural genomics (SG) consortia established worldwide have developed pipelines for target selection, protein production, sample preparation, crystallization, and structure determination by X-ray crystallography and NMR. These efforts resulted in the determination of over 13,500 protein structures, mostly from unique protein families, and increased the structural coverage of the expanding protein universe. SG programs contributed over 4400 publications to the scientific literature. The NIH-funded Protein Structure Initiatives alone have produced over 2000 scientific publications, which to date have attracted more than 93,000 citations. Software and database developments that were necessary to handle high-throughput structure determination workflows have led to structures of better quality and improved integrity of the associated data. Organized and accessible data have a positive impact on the reproducibility of scientific experiments. Most of the experimental data generated by the SG centers are freely available to the community and has been utilized by scientists in various fields of research. SG projects have created, improved, streamlined, and validated many protocols for protein production and crystallization, data collection, and functional analysis, significantly benefiting biological and biomedical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Terwilliger TC, Waldo G, Peat TS, Newman JM, Chu K, Berendzen J (1998) Class-directed structure determination: foundation for a protein structure initiative. Protein Sci 7(9):1851–1856. doi:10.1002/pro.5560070901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vitkup D, Melamud E, Moult J, Sander C (2001) Completeness in structural genomics. Nat Struct Biol 8(6):559–566. doi:10.1038/88640

    Article  CAS  PubMed  Google Scholar 

  3. Grabowski M, Joachimiak A, Otwinowski Z, Minor W (2007) Structural genomics: keeping up with expanding knowledge of the protein universe. Curr Opin Struct Biol 17(3):347–353. doi:10.1016/j.sbi.2007.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Levitt M (2009) Nature of the protein universe. Proc Natl Acad Sci USA 106(27):11079–11084. doi:10.1073/pnas.0905029106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. NIGMS (2001) PSI pilot phase fact sheet. https://www.nigms.nih.gov/Research/specificareas/PSI/background/Pages/PilotFacts.aspx. Accessed 4 Nov 2015

  6. NIGMS (2006) PSI production phase fact sheet. http://www.nigms.nih.gov/Research/SpecificAreas/PSI/Background/Pages/PSI2FactSheet.aspx. Accessed 4 Nov 2015

  7. NIGMS (2010) NIH grants will advance studies of the form and function of proteins. http://www.nigms.nih.gov/News/results/Pages/20100930.aspx. Accessed 4 Nov 2015

  8. Yokoyama S, Terwilliger TC, Kuramitsu S, Moras D, Sussman JL (2007) RIKEN aids international structural genomics efforts. Nature 445(7123):21. doi:10.1038/445021a

    Article  CAS  PubMed  Google Scholar 

  9. Cassman M, World Technology Evaluation Center (2007) Systems biology: international research and development. Springer, Dordrecht

    Book  Google Scholar 

  10. Tanaka A, Hirai A, Harai D, Nakayama K, Fujii A, Yokoyama S (2015) Intellectual property rights management for structural genomics research. http://www.protein.gsc.riken.jp/Concept/Partnership/partner_eng.htm. Accessed 4 Nov 2015

  11. SGC Mission and Philosophy (2015). http://www.thesgc.org/about/what_is_the_sgc. Accessed 4 Nov 2015

  12. SGC (2011) Press release. http://www.thesgc.org/sites/default/files/SGC_PhaseIII_PR_FINAL_%20for_release_110928_v110926.pdf. Accessed 4 Nov 2015

  13. O’Connel M (2013) Toxin, reveal thyself!—clues to deadliest disease being unlocked. Ward Rounds, 2013. http://www.wardrounds.northwestern.edu/summer-fall-2013/features/clues-to-deadliest-diseases/

  14. Gerlt JA, Allen KN, Almo SC, Armstrong RN, Babbitt PC, Cronan JE, Dunaway-Mariano D, Imker HJ, Jacobson MP, Minor W, Poulter CD, Raushel FM, Sali A, Shoichet BK, Sweedler JV (2011) The enzyme function initiative. Biochemistry 50(46):9950–9962. doi:10.1021/bi201312u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. wwPDB (2015) PDB exchange dictionary. http://mmcif.wwpdb.org/dictionaries/mmcif_pdbx.dic/Items/_pdbx_SG_project.initial_of_center.html. Accessed 20 Aug 2015

  16. Albeck S, Alzari P, Andreini C, Banci L, Berry IM, Bertini I, Cambillau C, Canard B, Carter L, Cohen SX, Diprose JM, Dym O, Esnouf RM, Felder C, Ferron F, Guillemot F, Hamer R, Ben Jelloul M, Laskowski RA, Laurent T, Longhi S, Lopez R, Luchinat C, Malet H, Mochel T, Morris RJ, Moulinier L, Oinn T, Pajon A, Peleg Y, Perrakis A, Poch O, Prilusky J, Rachedi A, Ripp R, Rosato A, Silman I, Stuart DI, Sussman JL, Thierry JC, Thompson JD, Thornton JM, Unger T, Vaughan B, Vranken W, Watson JD, Whamond G, Henrick K (2006) SPINE bioinformatics and data-management aspects of high-throughput structural biology. Acta Crystallogr D Biol Crystallogr 62(Pt 10):1184–1195. doi:10.1107/S090744490602991X

    Article  CAS  PubMed  Google Scholar 

  17. Banci L, Bertini I, Cusack S, de Jong RN, Heinemann U, Jones EY, Kozielski F, Maskos K, Messerschmidt A, Owens R, Perrakis A, Poterszman A, Schneider G, Siebold C, Silman I, Sixma T, Stewart-Jones G, Sussman JL, Thierry JC, Moras D (2006) First steps towards effective methods in exploiting high-throughput technologies for the determination of human protein structures of high biomedical value. Acta Crystallogr D Biol Crystallogr 62(Pt 10):1208–1217. doi:10.1107/S0907444906029350

    Article  CAS  PubMed  Google Scholar 

  18. Chim N, Habel JE, Johnston JM, Krieger I, Miallau L, Sankaranarayanan R, Morse RP, Bruning J, Swanson S, Kim H, Kim CY, Li H, Bulloch EM, Payne RJ, Manos-Turvey A, Hung LW, Baker EN, Lott JS, James MN, Terwilliger TC, Eisenberg DS, Sacchettini JC, Goulding CW (2011) The TB structural genomics consortium: a decade of progress. Tuberculosis (Edinb) 91(2):155–172. doi:10.1016/j.tube.2010.11.009

    Article  PubMed Central  Google Scholar 

  19. Musa TL, Ioerger TR, Sacchettini JC (2009) The tuberculosis structural genomics consortium: a structural genomics approach to drug discovery. Adv Protein Chem Struct Biol 77:41–76. doi:10.1016/S1876-1623(09)77003-8

    Article  CAS  PubMed  Google Scholar 

  20. Cyranoski D (2006) ‘Big science’ protein project under fire. Nature 443(7110):382. doi:10.1038/443382a

    Article  CAS  PubMed  Google Scholar 

  21. Petsko GA (2007) An idea whose time has gone. Genome Biol 8(6):107. doi:10.1186/gb-2007-8-6-107

    Article  PubMed  PubMed Central  Google Scholar 

  22. Banci L, Baumeister W, Heinemann U, Schneider G, Silman I, Stuart DI, Sussman JL (2007) An idea whose time has come. Genome Biol 8(11):408. doi:10.1186/gb-2007-8-11-408

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lane E, Ham B (2012) Science policy. The payoff of federal R&D: iPod, Google, and human genome project. Science 336(6080):433

    PubMed  Google Scholar 

  24. Tripp S, Grueber M (2011) Economic impact of the human genome project. http://battelle.org/docs/default-document-library/economic_impact_of_the_human_genome_project.pdf. Accessed 4 Nov 2015

  25. Liu J, Montelione GT, Rost B (2007) Novel leverage of structural genomics. Nat Biotechnol 25(8):849–851. doi:10.1038/nbt0807-849

    Article  CAS  PubMed  Google Scholar 

  26. Dessailly BH, Nair R, Jaroszewski L, Fajardo JE, Kouranov A, Lee D, Fiser A, Godzik A, Rost B, Orengo C (2009) PSI-2: structural genomics to cover protein domain family space. Structure 17(6):869–881. doi:10.1016/j.str.2009.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. O’Donovan C, Martin MJ, Gattiker A, Gasteiger E, Bairoch A, Apweiler R (2002) High-quality protein knowledge resource: SWISS-PROT and TrEMBL. Brief Bioinform 3(3):275–284

    Article  PubMed  Google Scholar 

  28. Uniprot (2015) Current release statistics. http://www.ebi.ac.uk/uniprot/TrEMBLstats. Accessed 4 Nov 2015

  29. Lee D, Grant A, Marsden RL, Orengo C (2005) Identification and distribution of protein families in 120 completed genomes using Gene3D. Proteins 59(3):603–615. doi:10.1002/prot.20409

    Article  CAS  PubMed  Google Scholar 

  30. Unger R, Uliel S, Havlin S (2003) Scaling law in sizes of protein sequence families: from super-families to orphan genes. Proteins 51(4):569–576. doi:10.1002/prot.10347

    Article  CAS  PubMed  Google Scholar 

  31. Nair R, Liu J, Soong TT, Acton TB, Everett JK, Kouranov A, Fiser A, Godzik A, Jaroszewski L, Orengo C, Montelione GT, Rost B (2009) Structural genomics is the largest contributor of novel structural leverage. J Struct Funct Genomics 10(2):181–191. doi:10.1007/s10969-008-9055-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Khafizov K, Ivanov MV, Glazova OV, Kovalenko SP (2015) Computational approaches to study the effects of small genomic variations. J Mol Model 21(10):2794. doi:10.1007/s00894-015-2794-y

    Article  Google Scholar 

  33. Khafizov K, Madrid-Aliste C, Almo SC, Fiser A (2014) Trends in structural coverage of the protein universe and the impact of the protein structure initiative. Proc Natl Acad Sci USA 111(10):3733–3738. doi:10.1073/pnas.1321614111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pieper U, Webb BM, Dong GQ, Schneidman-Duhovny D, Fan H, Kim SJ, Khuri N, Spill YG, Weinkam P, Hammel M, Tainer JA, Nilges M, Sali A (2014) ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 42(Database issue):D336–D346. doi:10.1093/nar/gkt1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arnold K, Kiefer F, Kopp J, Battey JN, Podvinec M, Westbrook JD, Berman HM, Bordoli L, Schwede T (2009) The protein model portal. J Struct Funct Genomics 10(1):1–8. doi:10.1007/s10969-008-9048-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moult J (2005) A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr Opin Struct Biol 15(3):285–289. doi:10.1016/j.sbi.2005.05.011 

  37. Lesley SA, Kuhn P, Godzik A, Deacon AM, Mathews I, Kreusch A, Spraggon G, Klock HE, McMullan D, Shin T, Vincent J, Robb A, Brinen LS, Miller MD, McPhillips TM, Miller MA, Scheibe D, Canaves JM, Guda C, Jaroszewski L, Selby TL, Elsliger MA, Wooley J, Taylor SS, Hodgson KO, Wilson IA, Schultz PG, Stevens RC (2002) Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proc Natl Acad Sci USA 99(18):11664–11669. doi:10.1073/pnas.142413399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang Y, Thiele I, Weekes D, Li Z, Jaroszewski L, Ginalski K, Deacon AM, Wooley J, Lesley SA, Wilson IA, Palsson B, Osterman A, Godzik A (2009) Three-dimensional structural view of the central metabolic network of Thermotoga maritima. Science 325(5947):1544–1549. doi:10.1126/science.1174671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Omenn GS, Lane L, Lundberg EK, Beavis RC, Nesvizhskii AI, Deutsch EW (2015) Metrics for the human proteome project 2015: progress on the human proteome and guidelines for high-confidence protein identification. J Proteome Res 14(9):3452–3460. doi:10.1021/acs.jproteome.5b00499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gaudet P, Argoud-Puy G, Cusin I, Duek P, Evalet O, Gateau A, Gleizes A, Pereira M, Zahn-Zabal M, Zwahlen C, Bairoch A, Lane L (2013) neXtProt: organizing protein knowledge in the context of human proteome projects. J Proteome Res 12(1):293–298. doi:10.1021/pr300830v

    Article  CAS  PubMed  Google Scholar 

  41. Mizianty MJ, Fan X, Yan J, Chalmers E, Woloschuk C, Joachimiak A, Kurgan L (2014) Covering complete proteomes with X-ray structures: a current snapshot. Acta Crystallogr D Biol Crystallogr 70(Pt 11):2781–2793. doi:10.1107/S1399004714019427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7(4):1029–1038. doi:10.1002/pro.5560070420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kloppmann E, Punta M, Rost B (2012) Structural genomics plucks high-hanging membrane proteins. Curr Opin Struct Biol 22(3):326–332. doi:10.1016/j.sbi.2012.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. PSI Publication Portal (2015). http://olenka.med.virginia.edu/psi. Accessed 24 Aug 2015

  45. RIKEN Structural/Genomics Proteomics Initiative. Publications (2015). http://www.rsgi.riken.jp/rsgi_e/ResearchResult/index.html. Accessed 24 Aug 2015

  46. SGC (2015) Publications. www.thesgc.org/publications. Accessed 24 Aug 2015

  47. CSGID Publications (2015). http://csgid.org/publications. Accessed 24 Aug 2015

  48. SSGCID Publications (2015). http://www.ssgcid.org/publications. Accessed 24 Aug 2015

  49. Enzyme Function Initiative Publications (2015). http://enzymefunction.org/publications. Accessed 20 Nov 2015

  50. Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordonez CL, Lory S, Walz T, Joachimiak A, Mekalanos JJ (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312(5779):1526–1530. doi:10.1126/science.1128393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Minor W, Cymborowski M, Otwinowski Z, Chruszcz M (2006) HKL-3000: the integration of data reduction and structure solution–from diffraction images to an initial model in minutes. Acta Crystallogr D Biol Crystallogr 62(Pt 8):859–866. doi:10.1107/S0907444906019949

    Article  PubMed  Google Scholar 

  52. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318(5854):1258–1265. doi:10.1126/science.1150577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318(5854):1266–1273. doi:10.1126/science.1150609

    Article  CAS  PubMed  Google Scholar 

  54. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190. doi:10.1101/gr.849004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gabanyi MJ, Adams PD, Arnold K, Bordoli L, Carter LG, Flippen-Andersen J, Gifford L, Haas J, Kouranov A, McLaughlin WA, Micallef DI, Minor W, Shah R, Schwede T, Tao YP, Westbrook JD, Zimmerman M, Berman HM (2011) The structural biology knowledgebase: a portal to protein structures, sequences, functions, and methods. J Struct Funct Genomics 12(2):45–54. doi:10.1007/s10969-011-9106-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Redner S (1998) How popular is your paper? An empirical study of the citation distribution. Eur Phys J B 4(2):131–134. doi:10.1007/s100510050359

    Article  CAS  Google Scholar 

  57. Albarrán P, Crespo J, Ortuño I, Ruiz-Castillo J (2011) The skewness of science in 219 sub-fields and a number of aggregates. Scientometrics 88(2):385–397. doi:10.1007/s11192-011-0407-9

    Article  Google Scholar 

  58. Brzezinski M (2015) Power laws in citation distributions: evidence from Scopus. Scientometrics 103(1):213–228. doi:10.1007/s11192-014-1524-z

    Article  PubMed  PubMed Central  Google Scholar 

  59. Peterson GJ, Pressé S, Dill KA (2010) Nonuniversal power law scaling in the probability distribution of scientific citations. Proc Natl Acad Sci 107(37):16023–16027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Clauset A, Shalizi C, Newman M (2009) Power-law distributions in empirical data. SIAM Rev 51(4):661–703. doi:10.1137/070710111

    Article  Google Scholar 

  61. Chen L, Oughtred R, Berman HM, Westbrook J (2004) TargetDB: a target registration database for structural genomics projects. Bioinformatics 20(16):2860–2862. doi:10.1093/bioinformatics/bth300

    Article  CAS  PubMed  Google Scholar 

  62. Morris C (2015) PiMS: a data management system for structural proteomics. Methods Mol Biol 1261:21–34. doi:10.1007/978-1-4939-2230-7_2

    Article  CAS  PubMed  Google Scholar 

  63. Morris C, Pajon A, Griffiths SL, Daniel E, Savitsky M, Lin B, Diprose JM, da Silva AW, Pilicheva K, Troshin P, van Niekerk J, Isaacs N, Naismith J, Nave C, Blake R, Wilson KS, Stuart DI, Henrick K, Esnouf RM (2011) The protein information management system (PiMS): a generic tool for any structural biology research laboratory. Acta Crystallogr D Biol Crystallogr 67(Pt 4):249–260. doi:10.1107/S0907444911007943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zolnai Z, Lee PT, Li J, Chapman MR, Newman CS, Phillips GN Jr, Rayment I, Ulrich EL, Volkman BF, Markley JL (2003) Project management system for structural and functional proteomics: sesame. J Struct Funct Genomics 4(1):11–23

    Article  CAS  PubMed  Google Scholar 

  65. Berman HM (2008) The protein data bank: a historical perspective. Acta Crystallogr A 64(Pt 1):88–95. doi:10.1107/S0108767307035623

    Article  CAS  PubMed  Google Scholar 

  66. Weekes D, Krishna SS, Bakolitsa C, Wilson IA, Godzik A, Wooley J (2010) TOPSAN: a collaborative annotation environment for structural genomics. BMC Bioinform 11:426. doi:10.1186/1471-2105-11-426

    Article  Google Scholar 

  67. Prilusky J, Hodis E, Canner D, Decatur WA, Oberholser K, Martz E, Berchanski A, Harel M, Sussman JL (2011) Proteopedia: a status report on the collaborative, 3D web-encyclopedia of proteins and other biomolecules. J Struct Biol 175(2):244–252. doi:10.1016/j.jsb.2011.04.011

    Article  CAS  PubMed  Google Scholar 

  68. Zimmerman MD, Grabowski M, Domagalski MJ, Maclean EM, Chruszcz M, Minor W (2014) Data management in the modern structural biology and biomedical research environment. Methods Mol Biol 1140:1–25. doi:10.1007/978-1-4939-0354-2_1

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gifford LK, Carter LG, Gabanyi MJ, Berman HM, Adams PD (2012) The protein structure initiative structural biology knowledgebase technology portal: a structural biology web resource. J Struct Funct Genomics 13(2):57–62. doi:10.1007/s10969-012-9133-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kobayashi N, Harano Y, Tochio N, Nakatani E, Kigawa T, Yokoyama S, Mading S, Ulrich EL, Markley JL, Akutsu H, Fujiwara T (2012) An automated system designed for large scale NMR data deposition and annotation: application to over 600 assigned chemical shift data entries to the BioMagResBank from the Riken structural genomics/proteomics initiative internal database. J Biomol NMR 53(4):311–320. doi:10.1007/s10858-012-9641-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Kent Wenger R, Yao H, Markley JL (2008) BioMagResBank. Nucleic Acids Res 36(Database issue):D402–D408. doi:10.1093/nar/gkm957

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Seiler CY, Park JG, Sharma A, Hunter P, Surapaneni P, Sedillo C, Field J, Algar R, Price A, Steel J, Throop A, Fiacco M, LaBaer J (2014) DNASU plasmid and PSI:Biology-Materials repositories: resources to accelerate biological research. Nucleic acids research 42(Database issue):D1253–D1260. doi:10.1093/nar/gkt1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. SSGCID Available Materials (2015). http://www.ssgcid.org/available-materials. Accessed 23 Nov 2015

  74. Brown PJ, Muller S (2015) Open access chemical probes for epigenetic targets. Future Med Chem 7(14):1901–1917. doi:10.4155/fmc.15.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Collins FS, Tabak LA (2014) Policy: NIH plans to enhance reproducibility. Nature 505(7485):612–613

    Article  PubMed  PubMed Central  Google Scholar 

  76. Niedzialkowska E, Gasiorowska O, Handing KB, Majorek KA, Porebski PJ, Shabalin IG, Zasadzinska E, Cymborowski M, Minor W (2016) Protein purification and crystallization artifacts: the tale usually not told. Protein Sci 25(3):720–733 doi:10.1002/pro.2861

    Article  CAS  PubMed  Google Scholar 

  77. Eschenfeldt WH, Lucy S, Millard CS, Joachimiak A, Mark ID (2009) A family of LIC vectors for high-throughput cloning and purification of proteins. Methods Mol Biol 498:105–115. doi:10.1007/978-1-59745-196-3_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Almo SC, Garforth SJ, Hillerich BS, Love JD, Seidel RD, Burley SK (2013) Protein production from the structural genomics perspective: achievements and future needs. Curr Opin Struct Biol 23(3):335–344. doi:10.1016/j.sbi.2013.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ericsson UB, Hallberg BM, Detitta GT, Dekker N, Nordlund P (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357(2):289–298. doi:10.1016/j.ab.2006.07.027

    Article  CAS  PubMed  Google Scholar 

  80. Newman J, Egan D, Walter TS, Meged R, Berry I, Ben Jelloul M, Sussman JL, Stuart DI, Perrakis A (2005) Towards rationalization of crystallization screening for small- to medium-sized academic laboratories: the PACT/JCSG+ strategy. Acta Crystallogr D Biol Crystallogr 61(Pt 10):1426–1431. doi:10.1107/S0907444905024984

    Article  PubMed  Google Scholar 

  81. MCSG Suite (2013). http://www.microlytic.com/content/mcsg-suite. Accessed 4 Nov 2015

  82. Sagemark J, Kraulis P, Weigelt J (2010) A software tool to accelerate design of protein constructs for recombinant expression. Protein Expr Purif 72(2):175–178. doi:10.1016/j.pep.2010.03.020

    Article  CAS  PubMed  Google Scholar 

  83. Przulj N, Wigle DA, Jurisica I (2004) Functional topology in a network of protein interactions. Bioinformatics 20(3):340–348. doi:10.1093/bioinformatics/btg415

    Article  CAS  PubMed  Google Scholar 

  84. NIGMS (2007) Report of the protein structure initiative assessment panel. https://www.nigms.nih.gov/News/reports/archivedreports2009-2007/Pages/PSIAssessmentPanel2007.aspx. Accessed 4 Nov 2015

  85. NIGMS (2014) Recommendations for continued investment in structural biology following the sunsetting of the protein structure initiative. https://www.nigms.nih.gov/News/reports/Documents/NIGMS-FSBC-report2014.pdf. Accessed 4 Nov 2015

  86. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67(Pt 4):235–242. doi:10.1107/S0907444910045749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66(Pt 2):213–221. doi:10.1107/S0907444909052925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chruszcz M, Domagalski M, Osinski T, Wlodawer A, Minor W (2010) Unmet challenges of structural genomics. Curr Opin Struct Biol 20(5):587–597. doi:10.1016/j.sbi.2010.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Snell G, Cork C, Nordmeyer R, Cornell E, Meigs G, Yegian D, Jaklevic J, Jin J, Stevens RC, Earnest T (2004) Automated sample mounting and alignment system for biological crystallography at a synchrotron source. Structure 12(4):537–545. doi:10.1016/j.str.2004.03.011

    Article  CAS  PubMed  Google Scholar 

  90. Miller MD, Deacon AM (2007) An X-ray microsource based system for crystal screening and beamline development during synchrotron shutdown periods. Nucl Instrum Methods Phys Res A 582(1):233–235. doi:10.1016/j.nima.2007.08.136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cherezov V, Hanson MA, Griffith MT, Hilgart MC, Sanishvili R, Nagarajan V, Stepanov S, Fischetti RF, Kuhn P, Stevens RC (2009) Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 microm size X-ray synchrotron beam. J R Soc Interface 6(Suppl 5):S587–S597. doi:10.1098/rsif.2009.0142.focus

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Advanced Protein Characterization Facility (2015). http://www.anl.gov/apcf/advanced-protein-characterization-facility. 2015

  93. Heras B, Martin JL (2005) Post-crystallization treatments for improving diffraction quality of protein crystals. Acta Crystallogr D Biol Crystallogr 61(Pt 9):1173–1180. doi:10.1107/S0907444905019451

    Article  PubMed  Google Scholar 

  94. Krojer T, Pike AC, von Delft F (2013) Squeezing the most from every crystal: the fine details of data collection. Acta Crystallogr D Biol Crystallogr 69(Pt 7):1303–1313. doi:10.1107/S0907444913013280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu G, Shen Y, Atreya HS, Parish D, Shao Y, Sukumaran DK, Xiao R, Yee A, Lemak A, Bhattacharya A, Acton TA, Arrowsmith CH, Montelione GT, Szyperski T (2005) NMR data collection and analysis protocol for high-throughput protein structure determination. Proc Natl Acad Sci USA 102(30):10487–10492. doi:10.1073/pnas.0504338102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yokoyama S (2003) Protein expression systems for structural genomics and proteomics. Curr Opin Chem Biol 7(1):39–43

    Article  CAS  PubMed  Google Scholar 

  97. Rossi P, Swapna GV, Huang YJ, Aramini JM, Anklin C, Conover K, Hamilton K, Xiao R, Acton TB, Ertekin A, Everett JK, Montelione GT (2010) A microscale protein NMR sample screening pipeline. J Biomol NMR 46(1):11–22. doi:10.1007/s10858-009-9386-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Everett JK, Tejero R, Murthy SB, Acton TB, Aramini JM, Baran MC, Benach J, Cort JR, Eletsky A, Forouhar F, Guan R, Kuzin AP, Lee HW, Liu G, Mani R, Mao B, Mills JL, Montelione AF, Pederson K, Powers R, Ramelot T, Rossi P, Seetharaman J, Snyder D, Swapna GV, Vorobiev SM, Wu Y, Xiao R, Yang Y, Arrowsmith CH, Hunt JF, Kennedy MA, Prestegard JH, Szyperski T, Tong L, Montelione GT (2015) A community resource of experimental data for NMR/X-ray crystal structure pairs. Protein Sci. doi:10.1002/pro.2774

    PubMed  Google Scholar 

  99. Laskowski RA, Watson JD, Thornton JM (2005) ProFunc: a server for predicting protein function from 3D structure. Nucleic acids research 33(Web Server issue):W89–W93. doi:10.1093/nar/gki414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Watson JD, Laskowski RA, Thornton JM (2005) Predicting protein function from sequence and structural data. Curr Opin Struct Biol 15(3):275–284. doi:10.1016/j.sbi.2005.04.003

    Article  CAS  PubMed  Google Scholar 

  101. Jaroszewski L, Rychlewski L, Li Z, Li W, Godzik A (2005) FFAS03: a server for profile–profile sequence alignments. Nucleic Acids Res 33(Web Server issue):W284–W288. doi:10.1093/nar/gki418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jaroszewski L, Li Z, Cai XH, Weber C, Godzik A (2011) FFAS server: novel features and applications. Nucleic Acids Res 39(Web Server issue):W38–W44. doi:10.1093/nar/gkr441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shumilin IA, Cymborowski M, Chertihin O, Jha KN, Herr JC, Lesley SA, Joachimiak A, Minor W (2012) Identification of unknown protein function using metabolite cocktail screening. Structure 20(10):1715–1725. doi:10.1016/j.str.2012.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kuhn ML, Majorek KA, Minor W, Anderson WF (2013) Broad-substrate screen as a tool to identify substrates for bacterial Gcn5-related N-acetyltransferases with unknown substrate specificity. Protein Sci 22(2):222–230. doi:10.1002/pro.2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Watson JD, Sanderson S, Ezersky A, Savchenko A, Edwards A, Orengo C, Joachimiak A, Laskowski RA, Thornton JM (2007) Towards fully automated structure-based function prediction in structural genomics: a case study. J Mol Biol 367(5):1511–1522. doi:10.1016/j.jmb.2007.01.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Akiva E, Brown S, Almonacid DE, Barber AE 2nd, Custer AF, Hicks MA, Huang CC, Lauck F, Mashiyama ST, Meng EC, Mischel D, Morris JH, Ojha S, Schnoes AM, Stryke D, Yunes JM, Ferrin TE, Holliday GL, Babbitt PC (2014) The Structure-Function Linkage Database. Nucleic Acids Res 42(Database issue):D521–D530. doi:10.1093/nar/gkt1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Structural Genomics Consortium, China Structural Genomics Consortium, Northeast Structural Genomics Consortium, Graslund S, Nordlund P, Weigelt J, Hallberg BM, Bray J, Gileadi O, Knapp S, Oppermann U, Arrowsmith C, Hui R, Ming J, dhePaganon S, Park HW, Savchenko A, Yee A, Edwards A, Vincentelli R, Cambillau C, Kim R, Kim SH, Rao Z, Shi Y, Terwilliger TC, Kim CY, Hung LW, Waldo GS, Peleg Y, Albeck S, Unger T, Dym O, Prilusky J, Sussman JL, Stevens RC, Lesley SA, Wilson IA, Joachimiak A, Collart F, Dementieva I, Donnelly MI, Eschenfeldt WH, Kim Y, Stols L, Wu R, Zhou M, Burley SK, Emtage JS, Sauder JM, Thompson D, Bain K, Luz J, Gheyi T, Zhang F, Atwell S, Almo SC, Bonanno JB, Fiser A, Swaminathan S, Studier FW, Chance MR, Sali A, Acton TB, Xiao R, Zhao L, Ma LC, Hunt JF, Tong L, Cunningham K, Inouye M, Anderson S, Janjua H, Shastry R, Ho CK, Wang D, Wang H, Jiang M, Montelione GT, Stuart DI, Owens RJ, Daenke S, Schutz A, Heinemann U, Yokoyama S, Bussow K, Gunsalus KC (2008) Protein production and purification. Nat Methods 5(2):135–146. doi:10.1038/nmeth.f.202

    Article  PubMed Central  Google Scholar 

  108. Bandaranayake AD, Almo SC (2014) Recent advances in mammalian protein production. FEBS Lett 588(2):253–260. doi:10.1016/j.febslet.2013.11.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Almo SC, Love JD (2014) Better and faster: improvements and optimization for mammalian recombinant protein production. Curr Opin Struct Biol 26:39–43. doi:10.1016/j.sbi.2014.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Glasziou P, Meats E, Heneghan C, Shepperd S (2008) What is missing from descriptions of treatment in trials and reviews? BMJ 336(7659):1472–1474. doi:10.1136/bmj.39590.732037.47

    Article  PubMed  PubMed Central  Google Scholar 

  111. Freedman LP, Cockburn IM, Simcoe TS (2015) The economics of reproducibility in preclinical research. PLoS Biol 13(6):e1002165. doi:10.1371/journal.pbio.1002165

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Steve Burley, Andrzej Joachimiak, Maks Chruszcz, Gaetano Montelione, Wayne Anderson, Steve Almo, Torsten Schwede, Alex Wlodawer, Zbyszek Dauter and David Cooper for reading the manuscripts and helpful discussion. The authors’ research was supported with federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN272201200026C, by NIH Grants HG008424, GM093342, GM094585, GM093324 and GM094662.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wladek Minor.

Additional information

Marek Grabowski and Ewa Niedzialkowska have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabowski, M., Niedzialkowska, E., Zimmerman, M.D. et al. The impact of structural genomics: the first quindecennial. J Struct Funct Genomics 17, 1–16 (2016). https://doi.org/10.1007/s10969-016-9201-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-016-9201-5

Keywords

Navigation