Advertisement

Journal of Structural and Functional Genomics

, Volume 16, Issue 3–4, pp 101–111 | Cite as

Automated protein motif generation in the structure-based protein function prediction tool ProMOL

  • Mikhail Osipovitch
  • Mitchell Lambrecht
  • Cameron Baker
  • Shariq Madha
  • Jeffrey L. Mills
  • Paul A. Craig
  • Herbert J. Bernstein
Article

Abstract

ProMOL, a plugin for the PyMOL molecular graphics system, is a structure-based protein function prediction tool. ProMOL includes a set of routines for building motif templates that are used for screening query structures for enzyme active sites. Previously, each motif template was generated manually and required supervision in the optimization of parameters for sensitivity and selectivity. We developed an algorithm and workflow for the automation of motif building and testing routines in ProMOL. The algorithm uses a set of empirically derived parameters for optimization and requires little user intervention. The automated motif generation algorithm was first tested in a performance comparison with a set of manually generated motifs based on identical active sites from the same 112 PDB entries. The two sets of motifs were equally effective in identifying alignments with homologs and in rejecting alignments with unrelated structures. A second set of 296 active site motifs were generated automatically, based on Catalytic Site Atlas entries with literature citations, as an expansion of the library of existing manually generated motif templates. The new motif templates exhibited comparable performance to the existing ones in terms of hit rates against native structures, homologs with the same EC and Pfam designations, and randomly selected unrelated structures with a different EC designation at the first EC digit, as well as in terms of RMSD values obtained from local structural alignments of motifs and query structures. This research is supported by NIH grant GM078077.

Keywords

Template-based alignment ProMOL PyMOL Molecular visualization Structural bioinformatics Enzyme Catalytic site motif 

Notes

Acknowledgments

The authors thank the invaluable assistance of Frances C. Bernstein and current and former students who have worked at Dowling College and at RIT on the SBEVSL project. Funding for the project has been provided by NIH GM078077, NSF-DUE 0402408, Rochester Institute of Technology and Dowling College.

References

  1. 1.
    Hanson B, Westin C, Rosa M, Grier A, Osipovitch M, MacDonald ML, Dodge G, Boli PM, Corwin CW, Kessler H, McKay T, Bernstein HJ, Craig PA (2014) Estimation of protein function using template-based alignment of enzyme active sites. BMC Bioinform 15:87. doi: 10.1186/1471-2105-15-87 CrossRefGoogle Scholar
  2. 2.
    Delano W (2002) Pymol: an open-source molecular graphics tool. CCP4 Newsl Protein Crystallogr 40:44–53Google Scholar
  3. 3.
    Porter CT, Bartlett GJ, Thornton JM (2004) The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucl Acids Res 32:D129–D133. doi: 10.1093/nar/gkh028 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    McKay T, Hart K, Horn A, Kessler H, Dodge G, Bardhi K, Bardhi K, Mills JL, Bernstein HJ, Craig PA (2015) Annotation of proteins of unknown function: initial enzyme results. J Struct Funct Genom 16:43–54. doi: 10.1007/s10969-015-9194-5 CrossRefGoogle Scholar
  5. 5.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucl Acids Res 28:235–242. doi: 10.1093/nar/28.1.235 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    West AH, Martinez-Hackert E, Stock AM (1995) Crystal structure of the catalytic domain of the chemotaxis receptor methylesterase, CheB. J Mol Biol 250:276–290. doi: 10.1006/jmbi.1995.0376 PubMedCrossRefGoogle Scholar
  7. 7.
    Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions and reversals. Soviet Phys Dokl 10:707–710Google Scholar
  8. 8.
    Djordjevic S, Goudreau PN, Xu Q, Stock AM, West AH (1998) Structural basis for methylesterase CheB regulation by a phosphorylation-activated domain. Proc Natl Acad Sci USA 95:1381–1386PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Altschul S, Gish W, Miller W, Myers EW, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
  10. 10.
    Holm L, Rosenström P (2010) Dali server: conservation mapping in 3D. Nucl Acids Res 38:W545–W549PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014) Pfam: the protein families database. Nucl Acids Res 42:D222–D230. doi: 10.1093/nar/gkt1223 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797. doi: 10.1093/nar/gkh340 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Marks GT, Susler M, Harrison DHT (2004) Mutagenic studies on histidine 98 of methylglyoxal synthase: effects on mechanism and conformational change. Biochemistry 43:3802–3813. doi: 10.1021/bi035838o PubMedCrossRefGoogle Scholar
  14. 14.
    Saadat D, Harrison DH (1999) The crystal structure of methylglyoxal synthase from Escherichia coli. Structure 7:309–317. doi: 10.1016/S0969-2126(99)80041-0 PubMedCrossRefGoogle Scholar
  15. 15.
    Marks GT, Harris TK, Massiah MA, Mildvan AS, Harrison DHT (2001) Mechanistic implications of methylglyoxal synthase complexed with phosphoglycolohydroxamic acid as observed by X-ray crystallography and NMR spectroscopy. Biochemistry 40:6805–6818. doi: 10.1021/bi0028237 PubMedCrossRefGoogle Scholar
  16. 16.
    Joint Center for Structural Genomics (JCSG) (2004) Crystal structure of Methylglyoxal synthase (TM1185) from Thermotoga maritima at 2.06 Å resolution. doi: 10.2210/pdb1vmd/pdb
  17. 17.
    Shahsavar A, Erfani Moghaddam M, Antonyuk SV, Khajeh K, Naderi-Manesh H (2010) Atomic resolution structure of methylglyoxal synthase from Thermus Sp. Gh5 bound to phosphate: insights into the distinctive effects of phosphate on the enzyme structure. doi: 10.2210/pdb2xw6/pdb
  18. 18.
    Sugahara M, Kunishima N (2004) Crystal structure of methylglyoxal synthase from Thermus thermophilus HB8. doi: 10.2210/pdb1wo8/pdb
  19. 19.
    Shahsavar A, Erfani Moghaddam M, Antonyuk SV, Khajeh K, Naderi-Manesh H (2010) Crystal structures of methylglyoxal synthase from Thermus Sp. Gh5 in the open and closed conformational states provide insight into the mechanism of allosteric regulation. doi: 10.2210/pdb2x8w/pdb
  20. 20.
    Ritter H, Koch-Nolte F, Marquez VE, Schulz GE (2003) Substrate Binding and catalysis of ecto-ADP-ribosyltransferase 2.2 from rat. Biochemistry 42:10155–10162. doi: 10.1021/bi034625w PubMedCrossRefGoogle Scholar
  21. 21.
    Mueller-Dieckmann C, Ritter H, Haag F, Koch-Nolte F, Schulz GE (2002) Structure of the ecto-ADP-ribosyl transferase ART2.2 from Rat. J Mol Biol 322:687–696. doi: 10.1016/S0022-2836(02)00818-5 PubMedCrossRefGoogle Scholar
  22. 22.
    Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. doi: 10.1038/msb.2011.75 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Almassy RJ, Janson CA, Kan CC, Hostomska Z (1992) Structures of apo and complexed Escherichia coli glycinamide ribonucleotide transformylase. Proc Natl Acad Sci USA 89:6114–6118PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Zhang Z, Caradoc-Davies TT, Dickson JM, Baker EN, Squire CJ (2009) Structures of Glycinamide Ribonucleotide Transformylase (PurN) from Mycobacterium tuberculosis reveal a novel dimer with relevance to drug discovery. J Mol Biol 389:722–733. doi: 10.1016/j.jmb.2009.04.044 PubMedCrossRefGoogle Scholar
  25. 25.
    Rotsaert FAJ, Hallberg BM, de Vries S, Moenne-Loccoz P, Divne C, Renganathan V, Gold MH (2003) Biophysical and structural analysis of a novel heme b iron ligation in the flavocytochrome cellobiose dehydrogenase. J Biol Chem 278:33224–33231. doi: 10.1074/jbc.M302653200 PubMedCrossRefGoogle Scholar
  26. 26.
    Persson K, Ly H, Dieckelmann M, Wakarchuk W, Withers S, Strynadka N (2001) Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nat Struct Biol 8:166–175PubMedCrossRefGoogle Scholar
  27. 27.
    Lairson LL, Chiu CPC, Ly HD, He S, Wakarchuk WW, Strynadka NCJ, Withers SG (2004) Intermediate trapping on a mutant retaining α-galactosyltransferase identifies an unexpected aspartate residue. J Biol Chem 279:28339–28344. doi: 10.1074/jbc.M400451200 PubMedCrossRefGoogle Scholar
  28. 28.
    Hofmann B, Tölzer S, Pelletier I, Altenbuchner J, van Pée KH, Hecht HJ (1998) Structural investigation of the cofactor-free chloroperoxidases. J Mol Biol 279:889–900. doi: 10.1006/jmbi.1998.1802 PubMedCrossRefGoogle Scholar
  29. 29.
    Sundaramoorthy M, Terner J, Poulos TL (1995) The crystal structure of chloroperoxidase: a heme peroxidase–cytochrome P450 functional hybrid. Structure 3:1367–1378. doi: 10.1016/S0969-2126(01)00274-X PubMedCrossRefGoogle Scholar
  30. 30.
    Matsui T, Furukawa M, Unno M, Tomita T, Ikeda-Saito M (2005) Roles of distal Asp in heme oxygenase from Corynebacterium diphtheriae, HmuO: a water-driven oxygen activation mechanism. J Biol Chem 280:2981–2989. doi: 10.1074/jbc.M410263200 PubMedCrossRefGoogle Scholar
  31. 31.
    Messerschmidt A, Macieira S, Velarde M, Baedeker M, Benda C, Jestel A, Brandstetter H, Neuefeind T, Blaesse M (2005) Crystal structure of the catalytic domain of human atypical protein kinase C-iota reveals interaction mode of phosphorylation site in turn motif. J Mol Biol 352:918–931. doi: 10.1016/j.jmb.2005.07.060 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Gosnell School of Life SciencesRochester Institute of TechnologyRochesterUSA
  2. 2.School of Chemistry and Materials ScienceRochester Institute of TechnologyRochesterUSA

Personalised recommendations