Skip to main content

Advertisement

Log in

Solution NMR structures of homeodomains from human proteins ALX4, ZHX1, and CASP8AP2 contribute to the structural coverage of the Human Cancer Protein Interaction Network

  • Published:
Journal of Structural and Functional Genomics

Abstract

High-quality solution NMR structures of three homeodomains from human proteins ALX4, ZHX1 and CASP8AP2 were solved. These domains were chosen as targets of a biomedical theme project pursued by the Northeast Structural Genomics Consortium. This project focuses on increasing the structural coverage of human proteins associated with cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ALX4:

Aristaless-like 4

ZHX1:

Zinc fingers and homeoboxes protein 1

CASP8AP2:

Caspase 8 associated protein 2

Al:

Aristaless

HCPIN:

Human Cancer Pathway Interaction Network

DSS:

4,4-Dimethyl-4-silapentane-1-sulfonate sodium salt

DTT:

Dithiothreitol

NESG:

Northeast Structural Genomics Consortium

NOE:

Nuclear Overhauser effect

PDB:

Protein Data Bank

RMSD:

Root mean square deviation

References

  1. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    CAS  PubMed  Google Scholar 

  2. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Wilson D, Sheng G, Lecuit T, Dostatni N, Desplan C (1993) Cooperative dimerization of paired class homeo domains on DNA. Genes Dev 7:2120–2134

    Article  CAS  PubMed  Google Scholar 

  4. Qu S, Tucker SC, Zhao Q, deCrombrugghe B, Wisdom R (1999) Physical and genetic interactions between Alx4 and Cart1. Development 126:359–369

    CAS  PubMed  Google Scholar 

  5. Wuyts W, Cleiren E, Homfray T, Rasore-Quartino A, Vanhoenacker F, Van HW (2000) The ALX4 homeobox gene is mutated in patients with ossification defects of the skull (foramina parietalia permagna, OMIM 1685000). J Med Genet 37:916–920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kayserili H, Uz E, Niessen C, Vargel I, Alanay Y, Tuncbilek G, Yigit G, Uyguner O, Candan S, Okur H, Kaygin S, Balci S, Mavili E, Alikasifoglu M, Haase I, Wollnik B, Akarsu NA (2009) ALX4 dysfunction disrupts craniofacial and epidermal development. Hum Mol Genet 18:4357–4366

    Article  CAS  PubMed  Google Scholar 

  7. Joshi PA, Chang H, Hamel PA (2006) Loss of Alx4, a stromally-restricted homeodomain protein, impairs mammary epithelial morphogenesis. Dev Biol 297:284–294

    Article  CAS  PubMed  Google Scholar 

  8. Mavrogiannis LA, Antonopoulou I, Baxova A, Kutilek S, Kim CA, Sugayama SM, Salamanca A, Wall SA, Morriss-Kay GM, Wilkie AOM (2001) Haploinsufficiency of the human homeobox gene ALX4 causes skull ossification defects. Nature Genet 27:17–18

    Article  CAS  PubMed  Google Scholar 

  9. Liu WB, Han F, Du XH, Jiang X, Li YH, Liu Y, Chen HQ, Ao L, Cui ZH, Cao J, Liu JY (2013) Epigenetic silencing of Aristaless-like homeobox-4, a potential tumor suppressor gene associated with lung cancer. Int J Cancer 134:1311–1322

  10. Yu J, Zhu T, Wang Z, Zhang H, Qian Z, Xu H, Gao B, Wang W, Gu L, Meng J, Wang J, Feng X, Li Y, Yao X, Zhu J (2007) A novel set of DNA methylation markers in urine sediments for sensitive/specific detection of bladder cancer. Clin Cancer Res 13:7296–7304

    Article  CAS  PubMed  Google Scholar 

  11. Chen HY, Zhu BH, Zhang CH, Yang DJ, Peng JJ, Chen JH, Liu FK, He YL (2012) High CpG island methylator phenotype is associated with lymph node metastasis and prognosis in gastric cancer. Cancer Sci 103:73–79

    Article  CAS  PubMed  Google Scholar 

  12. Ebert MP, Model F, Mooney S, Hale K, Lograsso J, Tonnes-Priddy L, Hoffmann J, Csepregi A, Rocken C, Molnar B, Schulz HU, Malfertheiner P, Lofton-Day C (2006) Aristaless-like homeobox-4 gene methylation is a potential marker for colorectal adenocarcinomas. Gastroenterology 131:1418–1430

    Article  CAS  PubMed  Google Scholar 

  13. Tanzer M, Balluff B, Distler J, Hale K, Leodolter A, Rocken C, Molnar B, Schmid R, Lofton-Day C, Schuster T, Ebert MP (2010) Performance of epigenetic markers SEPT9 and ALX4 in plasma for detection of colorectal precancerous lesions. PLoS ONE 5:e9061

    Article  PubMed Central  PubMed  Google Scholar 

  14. Zou H, Harrington JJ, Shire AM, Rego RL, Wang L, Campbell ME, Oberg AL, Ahlquist DA (2007) Highly methylated genes in colorectal neoplasia: implications for screening. Cancer Epidemiol Biomark Prev 16:2686–2696

    Article  CAS  Google Scholar 

  15. Chang H, Mohabir N, Done S, Hamel PA (2009) Loss of ALX4 expression in epithelial cells and adjacent stromal cells in breast cancer. J Clin Pathol 62:908–914

    Article  CAS  PubMed  Google Scholar 

  16. Yamada K, Printz RL, Osawa H, Granner DK (1999) Human ZHX1: cloning, chromosomal location, and interaction with transcription factor NF-Y. Biochem Biophys Res Commun 261:614–621

    Article  CAS  PubMed  Google Scholar 

  17. Chen S, Yu X, Lei Q, Ma L, Guo D (2013) The SUMOylation of zinc-fingers and homeoboxes 1 (ZHX1) by Ubc9 regulates its stability and transcriptional repression activity. J Cell Biochem 114:2323–2333

    Article  CAS  PubMed  Google Scholar 

  18. Kim SH, Park J, Choi MC, Kim HP, Park JH, Jung Y, Lee JH, Oh DY, Im SA, Bang YJ, Kim TY (2007) Zinc-fingers and homeoboxes 1 (ZHX1) binds DNA methyltransferase (DNMT) 3B to enhance DNMT3B-mediated transcriptional repression. Biochem Biophys Res Commun 355:318–323

    Article  CAS  PubMed  Google Scholar 

  19. Yamada K, Osawa H, Granner DK (1999) Identification of proteins that interact with NF-YA. FEBS Lett 460:41–45

    Article  CAS  PubMed  Google Scholar 

  20. Clement LC, Liu G, Perez-Torres I, Kanwar YS, Avila-Casado C, Chugh SS (2007) Early changes in gene expression that influence the course of primary glomerular disease. Kidney Int 72:337–347

    Article  CAS  PubMed  Google Scholar 

  21. Liu G, Clement LC, Kanwar YS, Avila-Casado C, Chugh SS (2006) ZHX proteins regulate podocyte gene expression during the development of nephrotic syndrome. J Biol Chem 281:39681–39692

    Article  CAS  PubMed  Google Scholar 

  22. Iuchi S (2001) Three classes of C2H2 zinc finger proteins. Cell Mol Life Sci 58:625–635

    Article  CAS  PubMed  Google Scholar 

  23. Yamada K, Kawata H, Matsuura K, Shou Z, Hirano S, Mizutani T, Yazawa T, Yoshino M, Sekiguchi T, Kajitani T, Miyamoto K (2002) Functional analysis and the molecular dissection of zinc-fingers and homeoboxes 1 (ZHX1). Biochem Biophys Res Commun 297:368–374

    Article  CAS  PubMed  Google Scholar 

  24. Yamada K, Kawata H, Shou Z, Hirano S, Mizutani T, Yazawa T, Sekiguchi T, Yoshino M, Kajitani T, Miyamoto K (2003) Analysis of zinc-fingers and homeoboxes (ZHX)-1-interacting proteins: molecular cloning and characterization of a member of the ZHX family, ZHX3. Biochem J 373:167–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Wienk H, Lammers I, Hotze A, Wu J, Wechselberger RW, Owens R, Stammers DK, Stuart D, Kaptein R, Folkers GE (2009) The tandem zinc-finger region of human ZHX adopts a novel C2H2 zinc finger structure with a C-terminal extension. Biochemistry 48:4431–4439

    Article  CAS  PubMed  Google Scholar 

  26. Bird L, Ren J, Nettleship J, Folkers G, Owens R, Stammers D (2010) Novel structural features in two ZHX homeodomains derived from a systematic study of single and multiple domains. BMC Struct Biol 10:13

    Article  PubMed Central  PubMed  Google Scholar 

  27. Kino T, Ichijo T, Chrousos GP (2004) FLASH interacts with p160 coactivator subtypes and differentially suppresses transcriptional activity of steroid hormone receptors. J Steroid Biochem Mol Biol 92:357–363

    Article  CAS  PubMed  Google Scholar 

  28. Barcaroli D, Bongiorno-Borbone L, Terrinoni A, Hofmann TG, Rossi M, Knight RA, Matera AG, Melino G, De Laurenzi V (2006) FLASH is required for histone transcription and S-phase progression. Proc Natl Acad Sci USA 103:14808–14812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Milovic-Holm K, Krieghoff E, Jensen K, Will H, Hofmann TG (2007) FLASH links the CD95 signaling pathway to the cell nucleus and nuclear bodies. EMBO J 26:391–401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Jiao Y, Cui L, Gao C, Li W, Zhao X, Liu S, Wu M, Deng G, Li Z (2012) CASP8AP2 is a promising prognostic indicator in pediatric acute lymphoblastic leukemia. Leuk Res 36:67–71

    Article  CAS  PubMed  Google Scholar 

  31. Flotho C, Coustan-Smith E, Pei D, Iwamoto S, Song G, Cheng C, Pui CH, Downing JR, Campana D (2006) Genes contributing to minimal residual disease in childhood acute lymphoblastic leukemia: prognostic significance of CASP8AP2. Blood 108:1050–1057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kiriyama M, Kobayashi Y, Saito M, Ishikawa F, Yonehara S (2009) Interaction of FLASH with arsenite resistance protein 2 is involved in cell cycle progression at S phase. Mol Cell Biol 29:4729–4741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Kino T, Chrousos GP (2003) Tumor necrosis factor alpha receptor- and Fas-associated FLASH inhibit transcriptional activity of the glucocorticoid receptor by binding to and interfering with its interaction with p160 type nuclear receptor coactivators. J Biol Chem 278:3023–3029

    Article  CAS  PubMed  Google Scholar 

  34. Huang YJ, Hang D, Lu LJ, Tong L, Gerstein MB, Montelione GT (2008) Targeting the human cancer pathway protein interaction network by structural genomics. Mol Cell Proteomics 7:2048–2060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Acton TB, Gunsalus KC, Xiao R, Ma LC, Aramini J, Baran MC, Chiang YW, Climent T, Cooper B, Denissova NG, Douglas SM, Everett JK, Ho CK, Macapagal D, Rajan PK, Shastry R, Shih LY, Swapna GVT, Wilson M, Wu M, Gerstein M, Inouye M, Hunt JF, Montelione GT (2005) Robotic cloning and protein production platform of the Northeast Structural Genomics Consortium. Methods Enzymol 394:210–243

    Article  CAS  PubMed  Google Scholar 

  36. Acton TB, Xiao R, Anderson S, Aramini J, Buchwald WA, Ciccosanti C, Conover K, Everett J, Hamilton K, Huang YJ, Janjua H, Kornhaber G, Lau J, Lee DY, Liu GH, Maglaqui M, Ma LC, Mao L, Patel D, Rossi P, Sahdev S, Shastry R, Swapna GVT, Tang YF, Tong SC, Wang DY, Wang H, Zhao L, Montelione GT (2011) Preparation of protein samples for NMR structure, function, and small-molecule screening studies. Methods Enzymol 493:21–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Xiao R, Anderson S, Aramini J, Belote R, Buchwald WA, Ciccosanti C, Conover K, Everett JK, Hamilton K, Huang YJ, Janjua H, Jiang M, Kornhaber GJ, Lee DY, Locke JY, Ma LC, Maglaqui M, Mao L, Mitra S, Patel D, Rossi P, Sahdev S, Sharma S, Shastry R, Swapna GVT, Tong SN, Wang D, Wang H, Zhao L, Montelione GT, Acton TB (2010) The high-throughput protein sample production platform of the Northeast Structural Genomics Consortium. J Struct Biol 172:21–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Neri D, Szyperski T, Otting G, Senn H, Wuthrich K (1989) Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28:7510–7516

    Article  CAS  PubMed  Google Scholar 

  39. Moseley HNB, Monleon D, Montelione GT (2001) Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Methods Enzymol 339:91–108

    Article  CAS  PubMed  Google Scholar 

  40. Zimmerman DE, Kulikowski CA, Huang YP, Feng WQ, Tashiro M, Shimotakahara S, Chien CY, Powers R, Montelione GT (1997) Automated analysis of protein NMR assignments using methods from artificial intelligence. J Mol Biol 269:592–610

    Article  CAS  PubMed  Google Scholar 

  41. Huang YJ, Powers R, Montelione GT (2005) Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. J Am Chem Soc 127:1665–1674

    Article  CAS  PubMed  Google Scholar 

  42. Liu G, Shen Y, Atreya HS, Parish D, Shao Y, Sukumaran DK, Xiao R, Yee A, Lemak A, Bhattacharya A, Acton TA, Arrowsmith CH, Montelione GT, Szyperski T (2005) NMR data collection and analysis protocol for high-throughput protein structure determination. Proc Natl Acad Sci USA 102:10487–10492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Güntert P, Mumenthaler C, Wüthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298

    Article  PubMed  Google Scholar 

  44. Herrmann T, Güntert P, Wüthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227

    Article  CAS  PubMed  Google Scholar 

  45. Huang YJ, Tejero R, Powers R, Montelione GT (2006) A topology-constrained distance network algorithm for protein structure determination from NOESY data. Proteins 62:587–603

    Article  CAS  PubMed  Google Scholar 

  46. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  CAS  PubMed  Google Scholar 

  47. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr Sect D: Biol Crystallogr 54:905–921

    Article  CAS  Google Scholar 

  48. Bhattacharya A, Tejero R, Montelione GT (2007) Evaluating protein structures determined by structural genomics consortia. Proteins 66:778–795

    Article  CAS  PubMed  Google Scholar 

  49. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Gehring WJ, Affolter M, Burglin T (1994) Homeodomain proteins. Annu Rev Biochem 63:487–526

    Article  CAS  PubMed  Google Scholar 

  51. Holm L, Sander C (1995) Dali: a network tool for protein structure comparison. Trends Biochem Sci 20:478–480

    Article  CAS  PubMed  Google Scholar 

  52. Miyazono K, Zhi Y, Takamura Y, Nagata K, Saigo K, Kojima T, Tanokura M (2010) Cooperative DNA-binding and sequence-recognition mechanism of aristaless and clawless. The EMBO Journal 29:1613–1623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Tucker SC, Wisdom R (1999) Site-specific heterodimerization by paired-class homeodomain proteins mediates selective transcriptional responses. J Biol Chem 274:32325–32332

    Article  CAS  PubMed  Google Scholar 

  54. Kojima T, Tsuji T, Saigo K (2005) A concerted action of a paired-type homeobox gene, aristaless, and a homolog of Hox11/tlx homeobox gene, clawless, is essential for the distal tip development of the Drosophila leg. Dev Biol 279:434–445

    Article  CAS  PubMed  Google Scholar 

  55. Stark MR, Johnson AD (1994) Interaction between two homeodomain proteins is specified by a short C-terminal tail. Nature 371:429–432

    Article  CAS  PubMed  Google Scholar 

  56. Moseley HNB, Sahota G, Montelione GT (2004) Assignment validation software suite for the evaluation and presentation of protein resonance assignment data. J Biomol NMR 28:341–355

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health, Grant Number: U54 GM094597 (T.S. and G.T.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Szyperski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Pulavarti, S.V.S.R.K., Eletsky, A. et al. Solution NMR structures of homeodomains from human proteins ALX4, ZHX1, and CASP8AP2 contribute to the structural coverage of the Human Cancer Protein Interaction Network. J Struct Funct Genomics 15, 201–207 (2014). https://doi.org/10.1007/s10969-014-9184-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-014-9184-z

Keywords

Navigation