Crystal structure of a type II dehydroquinate dehydratase-like protein from Bifidobacterium longum

  • Samuel H. Light
  • Sankar N. Krishna
  • Raymond C. Bergan
  • Arnon Lavie
  • Wayne F. AndersonEmail author


Dehydroquinate dehydratase (DHQD) catalyzes the third step in the biosynthetic shikimate pathway. Here we identify a Bifidobacterium longum protein with high sequence homology to type II DHQDs but no detectable DHQD activity under standard assay conditions. A crystal structure reveals that the B. longum protein adopts a DHQD-like tertiary structure but a distinct quaternary state. Apparently forming a dimer, the B. longum protein lacks the active site aspartic acid contributed from a neighboring protomer in the type II DHQD dodecamer. Relating to the absence of protein–protein interactions established in the type II DHQD dodecameric assembly, substantial conformational changes distinguish the would-be active site of the B. longum protein. As B. longum possess no other genes with homology to known DHQDs, these findings imply a unique DHQD activity within B. longum.


Post-translational activation Quaternary structure Shikimate pathway X-ray crystal structure Structural genomics 



Asymmetric unit


Dehydroquinate dehydratase


Protein Data Bank





The Center for Structural Genomics of Infectious Diseases has been funded in whole or in part with federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under contract nos. HHSN272200700058C and HHSN272201200026C. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Use of the LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor for the support of this research program (Grant 085P1000817).


  1. 1.
    Bentley R (1990) The shikimate pathway—a metabolic tree with many branches. Crit Rev Biochem Mol Biol 25(5):307–384PubMedCrossRefGoogle Scholar
  2. 2.
    Butler JR, Alworth WL, Nugent MJ (1974) Mechanism of dehydroquinase catalyzed dehydration. 1. Formation of a Schiff-base intermediate. J Am Chem Soc 96(5):1617–1618CrossRefGoogle Scholar
  3. 3.
    Chaudhuri S, Lambert JM, Mccoll LA, Coggins JR (1986) Purification and characterization of 3-dehydroquinase from Escherichia coli. Biochem J 239(3):699–704PubMedGoogle Scholar
  4. 4.
    Coggins JR, Abell C, Evan LB, Frederickson M, Robinson DA, Roszak AW, Lapthorn AP (2003) Experiences with the shikimate-pathway enzymes as targets for rational drug design. Biochem Soc Trans 31:548–552PubMedCrossRefGoogle Scholar
  5. 5.
    Dieckman L, Gu M, Stols L, Donnelly MI, Collart FR (2002) High throughput methods for gene cloning and expression. Protein Expr Purif 25(1):1–7PubMedCrossRefGoogle Scholar
  6. 6.
    Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132PubMedCrossRefGoogle Scholar
  7. 7.
    Gourley DG, Shrive AK, Polikarpov I, Krell T, Coggins JR, Hawkins AR, Isaacs NW, Sawyer L (1999) The two types of 3-dehydroquinase have distinct structures but catalyze the same overall reaction. Nat Struct Biol 6(6):521–525PubMedCrossRefGoogle Scholar
  8. 8.
    Harris JM, Gonzalez-Bello C, Kleanthous C, Hawkins AR, Coggins JR, Abell C (1996) Evidence from kinetic isotope studies for an enolate intermediate in the mechanism of type II dehydroquinases. Biochem J 319(Pt 2):333–336PubMedGoogle Scholar
  9. 9.
    Kleanthous C, Deka R, Davis K, Kelly SM, Cooper A, Harding SE, Price NC, Hawkins AR, Coggins JR (1992) A comparison of the enzymological and biophysical properties of two distinct classes of dehydroquinase enzymes. Biochem J 282(Pt 3):687–695PubMedGoogle Scholar
  10. 10.
    Lee BI, Kwak JE, Suh SW (2003) Crystal structure of the type II 3-dehydroquinase from Helicobacter pylori. Proteins 51(4):616–617PubMedCrossRefGoogle Scholar
  11. 11.
    Leech AP, James R, Coggins JR, Kleanthous C (1995) Mutagenesis of active site residues in type I dehydroquinase from Escherichia coli. stalled catalysis in a histidine to alanine mutant. J Biol Chem 270(43):25827–25836PubMedCrossRefGoogle Scholar
  12. 12.
    Light SH, Minasov G, Shuvalova L, Duban ME, Caffrey M, Anderson WF, Lavie A (2011) Insights into the mechanism of type I dehydroquinate dehydratases from structures of reaction intermediates. J Biol Chem 286(5):3531–3539PubMedCrossRefGoogle Scholar
  13. 13.
    Light SH, Minasov G, Shuvalova L, Peterson SN, Caffrey M, Anderson WF, Lavie A (2011) A conserved surface loop in type I dehydroquinate dehydratases positions an active site arginine and functions in substrate binding. Biochemistry 50(12):2357–2363PubMedCrossRefGoogle Scholar
  14. 14.
    Lumsden J, Coggins JR (1977) The subunit structure of the arom multienzyme complex of neurospora crassa. A possible pentafunctional polypeptide chain. Biochem J 161(3):599–607PubMedGoogle Scholar
  15. 15.
    Maes D, Gonzalez-Ramirez LA, Lopez-Jaramillo J, Yu B, De Bondt H, Zegers I, Afonina E, Garcia-Ruiz JM, Gulnik S (2004) Structural study of the type II 3-dehydroquinate dehydratase from Actinobacillus pleuropneumoniae. Acta Crystallogr D Biol Crystallogr 60(Pt 3):463–471PubMedCrossRefGoogle Scholar
  16. 16.
    McCoy AJ, Grosse-Kunstleve RW, Storoni LC, Read RJ (2005) Likelihood-enhanced fast translation functions. Acta Crystallogr D Biol Crystallogr 61:458–464PubMedCrossRefGoogle Scholar
  17. 17.
    Millard CS, Stols L, Quartey P, Kim Y, Dementieva I, Donnelly MI (2003) A less laborious approach to the high-throughput production of recombinant proteins in Escherichia coli using 2-liter plastic bottles. Protein Expr Purif 29(2):311–320PubMedCrossRefGoogle Scholar
  18. 18.
    Murshudov GN, Vagin AA, Lebedev A, Wilson KS, Dodson EJ (1999) Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr D Biol Crystallogr 55:247–255PubMedCrossRefGoogle Scholar
  19. 19.
    Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Macromol Crystallogr, Pt A 276:307–326CrossRefGoogle Scholar
  20. 20.
    Pan Q, Yao Y, Li ZS (2012) Theoretical study of the reaction mechanism of mycobacterium tuberculosis type II dehydroquinate dehydratase. Comput Theor Chem 1001:60–66CrossRefGoogle Scholar
  21. 21.
    Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6(1):29–40PubMedCrossRefGoogle Scholar
  22. 22.
    Roberts F, Roberts CW, Johnson JJ, Kyle DE, Krell T, Coggins JR, Coombs GH, Milhous WK, Tzipori S, Ferguson DJ, Chakrabarti D, McLeod R (1998) Evidence for the shikimate pathway in apicomplexan parasites. Nature 393(6687):801–805PubMedCrossRefGoogle Scholar
  23. 23.
    Roszak AW, Robinson DA, Krell T, Hunter IS, Fredrickson M, Abell C, Coggins JR, Lapthorn AJ (2002) The structure and mechanism of the type II dehydroquinase from Streptomyces coelicolor. Structure 10(4):493–503PubMedCrossRefGoogle Scholar
  24. 24.
    Stols L, Gu M, Dieckman L, Raffen R, Collart FR, Donnelly MI (2002) A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site. Protein Expr Purif 25(1):8–15PubMedCrossRefGoogle Scholar
  25. 25.
    Yao Y, Li ZS (2012) The reaction mechanism for dehydration process catalyzed by type I dehydroquinate dehydratase from Gram-negative salmonella enterica. Chem Phys Lett 519–20:100–104CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Samuel H. Light
    • 1
  • Sankar N. Krishna
    • 2
  • Raymond C. Bergan
    • 2
  • Arnon Lavie
    • 3
  • Wayne F. Anderson
    • 1
    Email author
  1. 1.Center for Structural Genomics of Infectious Diseases and Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  2. 2.Department of Medicine, Robert H. Lurie Cancer Center, Center for Molecular Innovation and Drug Discovery, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  3. 3.Department of Biochemistry and Molecular GeneticsUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations