Skip to main content
Log in

Solution NMR structures reveal unique homodimer formation by a winged helix-turn-helix motif and provide first structures for protein domain family PF10771

  • Published:
Journal of Structural and Functional Genomics

An Erratum to this article was published on 06 March 2012

Abstract

High-quality NMR structures of the homo-dimeric proteins Bvu3908 (69-residues in monomeric unit) from Bacteroides vulgatus and Bt2368 (74-residues) from Bacteroides thetaiotaomicron reveal the presence of winged helix-turn-helix (wHTH) motifs mediating tight complex formation. Such homo-dimer formation by winged HTH motifs is otherwise found only in two DNA-binding proteins with known structure: the C-terminal wHTH domain of transcriptional activator FadR from E. coli and protein TubR from B. thurigensis, which is involved in plasmid DNA segregation. However, the relative orientation of the wHTH motifs is different and residues involved in DNA-binding are not conserved in Bvu3908 and Bt2368. Hence, the proteins of the present study are not very likely to bind DNA, but are likely to exhibit a function that has thus far not been ascribed to homo-dimers formed by winged HTH motifs. The structures of Bvu3908 and Bt2368 are the first atomic resolution structures for PFAM family PF10771, a family of unknown function (DUF2582) currently containing 128 members.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

DSS:

4,4-Dimethyl-4-silapentane-1-sulfonate sodium salt

DTT:

Dithiothreitol

HTH:

Helix-turn-helix

MES:

2-(N-Morpholino)ethanesulfonic acid

NESG:

Northeast Structural Genomics Consortium

NOE:

Nuclear Overhauser effect

PDB:

Protein Data Bank

RDC:

Residual dipolar coupling

RMSD:

Root mean square deviation

wHTH:

Winged helix-turn-helix

References

  1. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  PubMed  CAS  Google Scholar 

  2. Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, Hooper LV, Gordon JI (2003) A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299:2074–2076

    Article  PubMed  CAS  Google Scholar 

  3. Xu J, Mahowald MA, Ley RE, Lozupone CA, Hamady M, Martens EC, Henrissat B, Coutinho PM, Minx P, Latreille P, Cordum H, Van Brunt A, Kim K, Fulton RS, Fulton LA, Clifton SW, Wilson RK, Knight RD, Gordon JI (2007) Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol 5:1574–1586

    CAS  Google Scholar 

  4. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  PubMed  CAS  Google Scholar 

  5. Acton TB, Gunsalus KC, Xiao R, Ma LC, Aramini J, Baran MC, Chiang YW, Climent T, Cooper B, Denissova NG, Douglas SM, Everett JK, Ho CK, Macapagal D, Rajan PK, Shastry R, Shih LY, Swapna GVT, Wilson M, Wu M, Gerstein M, Inouye M, Hunt JF, Montelione GT (2005) Nuclear magnetic resonance of biological macromolecules, Part C. In: James TL (ed) Methods in enzymology, vol 394. Elsevier, San Diego, pp 210–243

    Google Scholar 

  6. Xiao R, Anderson S, Aramini J, Belote R, Buchwald WA, Ciccosanti C, Conover K, Everett JK, Hamilton K, Huang YJ, Janjua H, Jiang M, Kornhaber GJ, Lee DY, Locke JY, Ma LC, Maglaqui M, Mao L, Mitra S, Patel D, Rossi P, Sahdev S, Sharma S, Shastry R, Swapna GVT, Tong SN, Wang DY, Wang HA, Zhao L, Montelione GT, Acton TB (2010) The high-throughput protein sample production platform of the Northeast Structural Genomics Consortium. J Struct Biol 172:21–33

    Article  PubMed  CAS  Google Scholar 

  7. Acton TB, Xiao R, Anderson S, Aramini J, Buchwald WA, Ciccosanti C, Conover K, Everett J, Hamilton K, Huang YJ, Janjua H, Kornhaber G, Lau J, Lee DY, Liu GH, Maglaqui M, Ma LC, Mao L, Patel D, Rossi P, Sahdev S, Shastry R, Swapna GVT, Tang YF, Tong SC, Wang DY, Wang H, Zhao L, Montelione GT (2011) Fragment-based drug design: tools, practical approaches, and examples. In: Kuo LC (ed) Methods in enzymology, vol 493. Elsevier, San Diego, pp 21–60

    Google Scholar 

  8. Neri D, Szyperski T, Otting G, Senn H, Wuthrich K (1989) Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28:7510–7516

    Article  PubMed  CAS  Google Scholar 

  9. Zimmerman DE, Kulikowski CA, Huang YP, Feng WQ, Tashiro M, Shimotakahara S, Chien CY, Powers R, Montelione GT (1997) Automated analysis of protein NMR assignments using methods from artificial intelligence. J Mol Biol 269:592–610

    Article  PubMed  CAS  Google Scholar 

  10. Moseley HNB, Monleon D, Montelione GT (2001) Nuclear magnetic resonance of biological macromolecules, Pt B. In: James TL, Dötsch V, Schmitz U (eds) Methods in enzymology, vol 339. Elsevier, San Diego, pp 91–108

    Google Scholar 

  11. Moseley HNB, Sahota G, Montelione GT (2004) Assignment validation software suite for the evaluation and presentation of protein resonance assignment data. J Biomol NMR 28:341–355

    Article  PubMed  CAS  Google Scholar 

  12. Huang YJ, Powers R, Montelione GT (2005) Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. J Am Chem Soc 127:1665–1674

    Article  PubMed  CAS  Google Scholar 

  13. Liu GH, Shen Y, Atreya HS, Parish D, Shao Y, Sukumaran DK, Xiao R, Yee A, Lemak A, Bhattacharya A, Acton TA, Arrowsmith CH, Montelione GT, Szyperski T (2005) NMR data collection and analysis protocol for high-throughput protein structure determination. Proc Natl Acad Sci USA 102:10487–10492

    Article  PubMed  CAS  Google Scholar 

  14. Guntert P, Mumenthaler C, Wuthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298

    Article  PubMed  CAS  Google Scholar 

  15. Herrmann T, Guntert P, Wuthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227

    Article  PubMed  CAS  Google Scholar 

  16. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  PubMed  CAS  Google Scholar 

  17. Linge JP, Williams MA, Spronk C, Bonvin A, Nilges M (2003) Refinement of protein structures in explicit solvent. Proteins 50:496–506

    Article  PubMed  CAS  Google Scholar 

  18. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr Sect D Biol Crystallogr 54:905–921

    Article  CAS  Google Scholar 

  19. Bhattacharya A, Tejero R, Montelione GT (2007) Evaluating protein structures determined by structural genomics consortia. Proteins Struct Funct Bioinf 66:778–795

    Article  CAS  Google Scholar 

  20. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  21. Liu JF, Montelione GT, Rost B (2007) Novel leverage of structural genomics. Nat Biotechnol 25:850–853

    Google Scholar 

  22. Petrey D, Honig B (2003) Macromolecular crystallography, Pt D. In: Carter CW, Sweet RM (eds) Methods in enzymology, vol 374. Elsevier, San Diego, pp 492–509

    Google Scholar 

  23. Yang AS, Honig B (2000) An integrated approach to the analysis and modeling of protein sequences and structures. I. Protein structural alignment and a quantitative measure for protein structural distance. J Mol Biol 301:665–678

    Article  PubMed  CAS  Google Scholar 

  24. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  25. Aravind L, Anantharaman V, Balaji S, Babu MM, Iyer LM (2005) The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol Rev 29:231–262

    PubMed  CAS  Google Scholar 

  26. Gajiwala KS, Burley SK (2000) Winged helix proteins. Curr Opin Struct Biol 10:110–116

    Article  PubMed  CAS  Google Scholar 

  27. Laskowski RA, Watson JD, Thornton JM (2005) ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res 33:W89–W93

    Article  PubMed  CAS  Google Scholar 

  28. Petrey D, Fischer M, Honig B (2009) Structural relationships among proteins with different global topologies and their implications for function annotation strategies. Proc Natl Acad Sci USA 106:17377–17382

    Article  PubMed  CAS  Google Scholar 

  29. Holm L, Sander C (1995) Dali—a network tool for protein structure comparison. Trends Biochem Sci 20:478–480

    Article  PubMed  CAS  Google Scholar 

  30. van Aalten DMF, Dirusso CC, Knudsen J (2001) The structural basis of acyl coenzyme A-dependent regulation of the transcription factor FadR. EMBO J 20:2041–2050

    Article  PubMed  Google Scholar 

  31. Xu YB, Heath RJ, Li ZM, Rock CO, White SW (2001) The FadR DNA complex—transcriptional control of fatty acid metabolism in Escherichia coli. J Biol Chem 276:17373–17379

    Article  PubMed  CAS  Google Scholar 

  32. Ni LS, Xu WJ, Kumaraswami M, Schumacher MA (2010) Plasmid protein TubR uses a distinct mode of HTH-DNA binding and recruits the prokaryotic tubulin homolog TubZ to effect DNA partition. Proc Natl Acad Sci USA 107:11763–11768

    Article  PubMed  CAS  Google Scholar 

  33. Nair R, Liu J, Soong T-T, Acton TB, Everett JK, Kouranov A, Fiser A, Godzik A, Jaroszewski L, Orengo C, Montelione GT, Rost B (2009) Structural genomics is the largest contributor of novel structural leverage. J Struct Funct Genomics 10:181–191

    Article  PubMed  CAS  Google Scholar 

  34. Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  PubMed  CAS  Google Scholar 

  35. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr Sect D Biol Crystallogr 66:12–21

    Article  Google Scholar 

  36. Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with 3-dimensional profiles. Nature 356:83–85

    Article  PubMed  CAS  Google Scholar 

  37. Sippl MJ (1993) Recognition of errors in 3-dimensional structures of proteins. Proteins 17:355–362

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank D. Wang, C. Ciccosanti, K. Hamilton and S. Bhattacharya for helpful discussions and technical support. This work was supported by the National Institutes of Health, grant number: U54 GM094597 (T.S. and G.T.M.). While data acquisition was in progress, Prof. T. Szyperski was a member of the New York Structural Biology Center. The Center is a STAR center supported by the New York State Office of Science, Technology, and Academic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Szyperski.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10969-012-9132-8.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5,411 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eletsky, A., Petrey, D., Zhang, Q.C. et al. Solution NMR structures reveal unique homodimer formation by a winged helix-turn-helix motif and provide first structures for protein domain family PF10771. J Struct Funct Genomics 13, 1–7 (2012). https://doi.org/10.1007/s10969-011-9121-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-011-9121-3

Keywords

Navigation