Skip to main content
Log in

PRICE (PRotein Interface Conservation and Energetics): a server for the analysis of protein–protein interfaces

  • Published:
Journal of Structural and Functional Genomics

Abstract

Residues in a protein–protein interface that are important for forming and stabilizing the interaction can usually be identified by looking at patterns of evolutionary conservation in groups of homologous proteins and also by the computational identification of binding hotspots. The PRICE (PRotein Interface Conservation and Energetics) server takes the coordinates of a protein–protein complex, dissects the interface into core and rim regions, and calculates (1) the degree of conservation (measured as the sequence entropy), as well as (2) the change in free energy of binding (∆∆G, due to alanine scanning mutagenesis) of interface residues. Results are displayed as color-coded plots and also made available for download. This enables the computational identification of binding hot spots, based on which further experiments can be designed. The method will aid in protein functional prediction by correct assignment of hot regions involved in binding. Consideration of sequence entropies for residues with large ∆∆G values may provide an indication of the biological relevance of the interface. Finally, the results obtained on a test set of alanine mutants has been compared to those obtained using other servers/methods. The PRICE server is a web application available at http://www.boseinst.ernet.in/resources/bioinfo/stag.html.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Janin J, Bahadur RP, Chakrabarti P (2008) Protein-protein interaction and quaternary structure. Q Rev Biophys 41:133–180. doi:10.1017/S0033583508004708

    Article  PubMed  CAS  Google Scholar 

  2. Ritchie DW (2008) Recent progress and future directions in protein-protein docking. Curr Protein Pept Sci 9:1–15

    Article  PubMed  CAS  Google Scholar 

  3. Karanicolas J, Kuhlman B (2009) Computational design of affinity and specificity at protein-protein interfaces. Curr Opin Struct Biol 19:458–463. doi:10.1016/j.sbi.2009.07.005

    Article  PubMed  CAS  Google Scholar 

  4. Bogan AA, Thorn KS (1998) Anatomy of hotspots in protein interfaces. J Mol Biol 280:1–9. doi:10.1006/jmbi.1998.1843

    Article  PubMed  CAS  Google Scholar 

  5. Guharoy M, Chakrabarti P (2009) Empirical estimation of the energetic contribution of individual interface residues in structures of protein-protein complexes. J Comput Aided Mol Des 23:645–654. doi:10.1007/s10822-009-9282-3

    Article  PubMed  CAS  Google Scholar 

  6. Reynolds C, Damerell D, Jones S (2009) ProtorP: a protein-protein interaction analysis server. Bioinformatics 25:413–414. doi:10.1093/bioinformatics/btn584

    Article  PubMed  CAS  Google Scholar 

  7. Saha RP, Bahadur RP, Pal A, Mandal S, Chakrabarti P (2006) ProFace: a server for the analysis of the physicochemical features of protein-protein interfaces. BMC Struct Biol 6:11. doi:10.1186/1472-6807-6-11

    Article  PubMed  Google Scholar 

  8. Kortemme T, Kim DE, Baker D (2004) Computational alanine scanning of protein-protein interfaces. Sci STKE 219:pl2. doi:10.1126/stke.2192004pl2

    Google Scholar 

  9. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L (2005) The FoldX web server: an online force field. Nucleic Acids Res 33:W382–W388. doi:10.1093/nar/gki387

    Article  PubMed  CAS  Google Scholar 

  10. Parthiban V, Gromiha MM, Schomburg D (2006) CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res 34:W239–W242. doi:10.1093/nar/gkl190

    Article  PubMed  CAS  Google Scholar 

  11. Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33:W306–W310. doi:10.1093/nar/gki375

    Article  PubMed  CAS  Google Scholar 

  12. Gao Y, Wang R, Lai L (2004) Structure-based method for analyzing protein-protein interfaces. J Mol Model 10:44–54

    Article  PubMed  CAS  Google Scholar 

  13. Tuncbag N, Keskin O, Gursoy A (2010) HotPoint: hot spot prediction server for protein interfaces. Nucleic Acids Res 38:W402–W406

    Article  PubMed  CAS  Google Scholar 

  14. Guney E, Tuncbag N, Keskin O, Gursoy A (2008) HotSprint: database of computational hot spots in protein interfaces. Nucleic Acids Res 36:D662–D666. doi:10.1093/nar/gkm813

    Article  PubMed  CAS  Google Scholar 

  15. Darnell SJ, LeGault L, Mitchell JC (2008) KFC Server: interactive forecasting of protein interaction hot spots. Nucleic Acids Res 36:W265–W269. doi:10.1093/nar/gkn346

    Article  PubMed  CAS  Google Scholar 

  16. Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N (2005) ConSurf: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33:W299–W302. doi:10.1093/nar/gki370

    Article  PubMed  CAS  Google Scholar 

  17. Mayrose I, Graur D, Ben-Tal N, Pupko T (2004) Comparison of site-specific rate-inference methods: Bayesian methods are superior. Mol Biol Evol 21:1781–1791. doi:10.1093/molbev/msh194

    Article  PubMed  CAS  Google Scholar 

  18. Morgan DH, Kristensen DM, Mittelman D, Lichtarge O (2006) ET viewer: an application for predicting and visualizing functional sites in protein structures. Bioinformatics 22:2049–2050. doi:10.1093/bioinformatics/btl285

    Article  PubMed  CAS  Google Scholar 

  19. Chakrabarti P, Janin J (2002) Dissecting protein-protein recognition sites. Proteins 47:334–343. doi:10.1002/prot.10085

    Article  PubMed  CAS  Google Scholar 

  20. Guharoy M, Chakrabarti P (2005) Conservation and relative importance of residues across protein-protein interfaces. Proc Natl Acad Sci USA 102:15447–15452. doi:10.1073/pnas.0505425102

    Article  PubMed  CAS  Google Scholar 

  21. Hubbard SJ, Thornton JM (1993) ‘NACCESS’, computer program, department of biochemistry and molecular biology, University College London”. http://www.bioinf.manchester.ac.uk/naccess/nac_readme.html

  22. Sander C, Schneider R (1991) Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9:56–68. doi:10.1002/prot.340090107

    Article  PubMed  CAS  Google Scholar 

  23. McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238:777–793. doi:10.1006/jmbi.1994.1334

    Article  PubMed  CAS  Google Scholar 

  24. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  25. Laskowski RA (1995) SURFNET: a program for visualizing molecular surfaces, cavities and intermolecular interactions. J Mol Graph 13:323–330. doi:10.1016/0263-7855(95)00073-9

    Article  PubMed  CAS  Google Scholar 

  26. Chao DT, Korsmeyer SJ (1998) BCL-2 family: regulators of cell death. Ann Rev Immunol 16:395–419. doi:10.1146/annurev.immunol.16.1.395

    Article  CAS  Google Scholar 

  27. Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M, Yoon HS, Shuker SB, Chang BS, Minn AJ, Thompson CB, Fesik SW (1997) Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275:983–986. doi:10.1126/science.275.5302.983

    Article  PubMed  CAS  Google Scholar 

  28. Rickert M, Wang X, Boulanger MJ, Goriatcheva N, Garcia KC (2005) The structure of interleukin-2 complexed with its alpha receptor. Science 308:1477–1480. doi:10.1126/science.1109745

    Article  PubMed  CAS  Google Scholar 

  29. Thanos CD, DeLano WL, Wells JA (2006) Hot-spot mimicry of a cytokine receptor by a small molecule. Proc Natl Acad Sci USA 103:15422–15427. doi:10.1073/pnas.0607058103

    Article  PubMed  CAS  Google Scholar 

  30. Dey S, Pal A, Chakrabarti P, Janin J (2010) The subunit interfaces of weakly associated homodimeric proteins. J Mol Biol 398:146–160. doi:10.1016/j.jmb.2010.02.020

    Article  PubMed  CAS  Google Scholar 

  31. Aloy P, Ceulemans H, Stark A, Russell RB (2003) The relationship between sequence and interaction divergence in proteins. J Mol Biol 332:989–998. doi:10.1016/j.jmb.2003.07.006

    Article  PubMed  CAS  Google Scholar 

  32. Pal A, Chakrabarti P, Bahadur R, Rodier F, Janin J (2007) Peptide segments in protein-protein interfaces. J Biosci 32:101–111

    Article  PubMed  CAS  Google Scholar 

  33. Bahadur RP, Chakrabarti P, Rodier F, Janin J (2004) A dissection of specific and non-specific protein-protein interfaces. J Mol Biol 336:943–955. doi:10.1016/j.jmb.2003.12.073

    Article  PubMed  CAS  Google Scholar 

  34. Thorn KS, Bogan AA (2001) ASEdb: a database of alanine mutations and their effects on the free energy of binding in protein interactions. Bioinformatics 17:284–285

    Article  PubMed  CAS  Google Scholar 

  35. Tuncbag N, Gursoy A, Keskin O (2009) Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics 25:1513–1520. doi:10.1093/bioinformatics/btp240

    Article  PubMed  CAS  Google Scholar 

  36. Fischer TB, Arunachalam KV, Bailey D, Mangual V, Bakhru S, Russo R, Huang D, Paczkowski M, Lalchandani V, Ramachandra C, Ellison B, Galer S, Shapley J, Fuentes E, Tsai J (2003) The binding interface database (BID): a compilation of amino acid hot spots in protein interfaces. Bioinformatics 19:1453–1454. doi:10.1093/bioinformatics/btg163

    Article  PubMed  CAS  Google Scholar 

  37. Kortemme T, Baker D (2002) A simple physical model for binding energy hot spots in protein-protein complexes. Proc Natl Acad Sci USA 99:14116–14121. doi:10.1073/pnas.202485799

    Article  PubMed  CAS  Google Scholar 

  38. Ofran Y, Rost B (2007) Protein-protein interaction hotspots carved into sequences. PLoS Comput Biol 3:e119. doi:10.1371/journal.pcbi.0030119

    Article  PubMed  Google Scholar 

  39. DeLano WL (2002) The PyMOL molecular graphics system DeLano Scientific, San Carlos. http://www.pymol.org

Download references

Acknowledgments

The work was funded by the Department of Biotechnology, India. We thank Ms. Paramita Ghosh for her help in the implementation of the program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinak Chakrabarti.

Additional information

Mainak Guharoy and Arumay Pal have contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 174 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guharoy, M., Pal, A., Dasgupta, M. et al. PRICE (PRotein Interface Conservation and Energetics): a server for the analysis of protein–protein interfaces. J Struct Funct Genomics 12, 33–41 (2011). https://doi.org/10.1007/s10969-011-9108-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-011-9108-0

Keywords

Navigation