Journal of Structural and Functional Genomics

, Volume 10, Issue 2, pp 151–156 | Cite as

Crystal structure of YfeU protein from Haemophilus influenzae: a predicted etherase involved in peptidoglycan recycling

  • Y. Kim
  • P. Quartey
  • R. Ng
  • T. I. Zarembinski
  • A. JoachimiakEmail author


The crystal structure of the H. influenzae YfeU protein, was determined at 1.90 Å resolution using multi-wavelength anomalous diffraction. YfeU belongs to a very large conserved family of proteins found mainly in bacteria but also in archaea and eukaryota. The protein is a homolog of eukaryotic glucokinase regulator and is predicted to be a sugar phosphate isomerase or aminotransferase. Here we describe the structure of YfeU and discuss the possible function as an etherase possibly involved in peptidoglycan recycling.


Alpha-beta-alpha sandwich Phosphosugar isomerase Etherase 



We wish to thank all members of the Structural Biology Center at Argonne National Laboratory for their help in conducting experiments. This work was supported by National Institutes of Health Grant GM62414, GM074942 and by the U.S. Department of Energy, Office of Biological and Environmental Research, under contract DE-AC02-06CH11357.


  1. 1.
    Todar K (2004) Todar’s online textbook of bacteriology. University of Wisconsin-Madison Department of Bacteriology, Madison, WIGoogle Scholar
  2. 2.
    Stols L, Gu M, Dieckman L, Raffen R, Collart FR, Donnelley MI (2002) A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site. Protein Expr Purif 25:8–15PubMedCrossRefGoogle Scholar
  3. 3.
    Dieckman L, Gu M, Stols L, Donnelley MI, Collart FR (2002) High throughput methods for gene cloning and expression. Protein Expr Purif 25:1–7PubMedCrossRefGoogle Scholar
  4. 4.
    Walsh MA, Dementieva I, Evans G, Sanishvili R, Joachimiak A (1999) Taking MAD to the extreme: ultrafast protein structure determination. Acta Crystallogr D Biol Crystallogr 55(6):1168–1173PubMedCrossRefGoogle Scholar
  5. 5.
    Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology, vol 276: Macromolecular Crystallography, part A, pp 307–326Google Scholar
  6. 6.
    Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921PubMedCrossRefGoogle Scholar
  7. 7.
    Morris RJ, Perrakis A, Lamzin VS (2003) ARP/wARP and automatic interpretation of protein electron density maps. Methods Enzymol 374:229–244PubMedCrossRefGoogle Scholar
  8. 8.
    Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291CrossRefGoogle Scholar
  9. 9.
    Teplyakov A, Obmolova G, Badet-Denisot MA, Badet B (1999) The mechanism of sugar phosphate isomerization by glucosamine 6-phosphate synthase. Protein Sci 8(3):596–602PubMedGoogle Scholar
  10. 10.
    Peschke U, Schmidt H, Zhang HZ, Piepersberg W (1995) Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78-11. Mol Microbiol 16(6):1137–1156PubMedCrossRefGoogle Scholar
  11. 11.
    Sorensen KI, Hove-Jensen B (1996) Ribose catabolism of Escherichia coli: characterization of the rpiB gene encoding ribose phosphate isomerase B and of the rpiR gene, which is involved in regulation of rpiB expression. J Bacteriol 178(4):1003–1011PubMedGoogle Scholar
  12. 12.
    Laskowski RA, Watson JD, Thornton JM (2005) ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res 33:W89–W93PubMedCrossRefGoogle Scholar
  13. 13.
    Ye S, von Delft F, Brooun A, Knuth MW, Swanson RV, McRee DE (2003) The crystal structure of shikimate dehydrogenase (AroE) reveals a unique NADPH binding mode. J Bacteriol 185(14):4144–4151PubMedCrossRefGoogle Scholar
  14. 14.
    Benach J, Lee I, Edstrom W, Kuzin AP, Chiang Y, Acton TB, Montelione GT, Hunt JF (2003) The 2.3 Ǻ crystal structure of the shikimate 5-dehydrogenase orthologue YdiB from Escherichia coli suggests a novel catalytic environment for an NAD-dependent dehydrogenase. J Biol Chem 278(21):19176–19182PubMedCrossRefGoogle Scholar
  15. 15.
    Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Barrell D, Bateman A, Binns D, Biswas M, Bradley P, Bork P, Bucher P, Copley RR, Courcelle E, Das U, Durbin R, Falquet L, Fleischmann W, Griffiths-Jones S, Haft D, Harte N, Hulo N, Kahn D, Kanapin A, Krestyaninova M, Lopez R, Letunic I, Lonsdale D, Silventoinen V, Orchard SE, Pagni M, Peyruc D, Ponting CP, Selengut JD, Servant F, Sigrist CJA, Vaughan R, Zdobnov EM (2003) The InterPro database, 2003 brings increased coverage and new features. Nucleic Acids Res 31:315–318PubMedCrossRefGoogle Scholar
  16. 16.
    Krissinel E, Henrick K (2003) Protein structure comparison in 3D based on secondary structure matching (SSM) followed by Ca alignment, scored by a new structural similarity function. In: Kungl AJ, Kungl PJ (eds), Proceedings of the 5th international conference on molecular structural biology, Vienna, 3–7 September, p 88Google Scholar
  17. 17.
    Seetharaman J, Rajashankar KR, Solorzano V, Kniewel R, Lima CD, Bonanno JB, Burley SK, Swaminathan S (2006) Crystal structures of two putative phosphoheptose isomerases. Proteins 63(4):1092–1096PubMedCrossRefGoogle Scholar
  18. 18.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  19. 19.
    Madera M, Vogel C, Kummerfeld SK, Chothia C, Gough J (2004) The SUPERFAMILY database in 2004: additions and improvements. Nucleic Acids Res 32:D235–D239PubMedCrossRefGoogle Scholar
  20. 20.
    Gough J, Karplus K, Hughey R, Chothia C (2001) Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313:903–919PubMedCrossRefGoogle Scholar
  21. 21.
    Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540PubMedGoogle Scholar
  22. 22.
    Hadi T, Dahl U, Mayer C, Tanner ME (2008) Mechanistic studies on N-acetylmuramic acid 6-phosphate hydrolase (MurQ): an etherase involved in peptidoglycan recycling. Biochemistry 47(44):11547–11558PubMedCrossRefGoogle Scholar
  23. 23.
    Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31:3497–3500PubMedCrossRefGoogle Scholar

Copyright information

©  US Government 2009

Authors and Affiliations

  • Y. Kim
    • 1
  • P. Quartey
    • 1
  • R. Ng
    • 1
  • T. I. Zarembinski
    • 1
  • A. Joachimiak
    • 1
    Email author
  1. 1.Midwest Center for Structural Genomics and Structural Biology Center, BiosciencesArgonne National LaboratoryArgonneUSA

Personalised recommendations