Skip to main content
Log in

X-Ray crystal structure of GarR—tartronate semialdehyde reductase from Salmonella typhimurium

  • Published:
Journal of Structural and Functional Genomics

Abstract

Tartronate semialdehyde reductases (TSRs), also known as 2-hydroxy-3-oxopropionate reductases, catalyze the reduction of tartronate semialdehyde using NAD as cofactor in the final stage of d-glycerate biosynthesis. These enzymes belong to family of structurally and mechanically related β-hydroxyacid dehydrogenases which differ in substrate specificity and catalyze reactions in specific metabolic pathways. Here, we present the crystal structure of GarR a TSR from Salmonella typhimurium determined by the single-wavelength anomalous diffraction method and refined to 1.65 Å resolution. The active site of the enzyme contains l-tartrate which most likely mimics a position of a glycerate which is a product of the enzyme reaction. The analysis of the TSR structure shows also a putative NADPH binding site in the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Gotto AM, Kornberg HL (1961) The metabolism of C2 compounds in micro-organisms. 7. Preparation and properties of crystalline tartronic semialdehyde reductase. Biochem J 81:273–284

    PubMed  CAS  Google Scholar 

  2. Njau RK, Herndon CA, Hawes JW (2000) Novel beta-hydroxyacid dehydrogenases in Escherichia coli and Haemophilus influenzae. J Biol Chem 275(49):38780–38786. doi:10.1074/jbc.M007432200

    Article  PubMed  CAS  Google Scholar 

  3. Njau RK, Herndon CA, Hawes JW (2001) New developments in our understanding of the beta-hydroxyacid dehydrogenases. Chem Biol Interact 130–132(1–3):785–791. doi:10.1016/S0009-2797(00)00234-9

    Article  PubMed  Google Scholar 

  4. Adams MJ, Ellis GH, Gover S, Naylor CE, Phillips C (1994) Crystallographic study of coenzyme, coenzyme analogue and substrate binding in 6-phosphogluconate dehydrogenase: implications for NADP specificity and the enzyme mechanism. Structure 2(7):651–668. doi:10.1016/S0969-2126(00)00066-6

    Article  PubMed  CAS  Google Scholar 

  5. Stols L, Gu M, Dieckman L, Raffen R, Collart FR, Donnelly MI (2002) A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site. Protein Expr Purif 25(1):8–15. doi:10.1006/prep.2001.1603

    Article  PubMed  CAS  Google Scholar 

  6. Walsh MA, Dementieva I, Evans G, Sanishvili R, Joachimiak A (1999) Taking MAD to the extreme: ultrafast protein structure determination. Acta Crystallogr D Biol Crystallogr 55(Pt 6):1168–1173. doi:10.1107/S0907444999003698

    Article  PubMed  CAS  Google Scholar 

  7. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Macromolecular Crystallography A 276:307–326. doi:10.1016/S0076-6879(97)76066-X

    Article  CAS  Google Scholar 

  8. Schneider TR, Sheldrick GM (2002) Substructure solution with SHELXD. Acta Crystallogr D Biol Crystallogr 58(Pt 2 Pt 10):1772–1779

    Article  PubMed  Google Scholar 

  9. Terwilliger TC, Berendzen J (1999) Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr 55(Pt 4):849–861. doi:10.1107/S0907444999000839

    Article  PubMed  CAS  Google Scholar 

  10. Terwilliger TC (2002) Automated structure solution, density modification and model building. Acta Crystallogr D Biol Crystallogr 58(Pt 11):1937–1940. doi:10.1107/S0907444902016438

    Article  PubMed  Google Scholar 

  11. Perrakis A, Harkiolaki M, Wilson KS, Lamzin VS (2001) ARP/wARP and molecular replacement. Acta Crystallogr D Biol Crystallogr 57(Pt 10):1445–1450. doi:10.1107/S0907444901014007

    Article  PubMed  CAS  Google Scholar 

  12. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54(Pt 5):905–921. doi:10.1107/S0907444998003254

    Article  PubMed  CAS  Google Scholar 

  13. Jones TA, Zou JY, Cowan SW, Kjeldgaard (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47(Pt 2):110–119. doi:10.1107/S0108767390010224

    Article  PubMed  Google Scholar 

  14. Murshudov GN, Vagin AA, Lebedev A, Wilson KS, Dodson EJ (1999) Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr D Biol Crystallogr 55(Pt 1):247–255. doi:10.1107/S090744499801405X

    Article  PubMed  CAS  Google Scholar 

  15. Collaborative Computational Project N (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50(Pt 5):760–763. doi:10.1107/S0907444994003112

    Article  Google Scholar 

  16. Laskowski RA, MacArthur MW, Thornton JM (1998) Validation of protein models derived from experiment. Curr Opin Struct Biol 8(5):631–639. doi:10.1016/S0959-440X(98)80156-5

    Article  PubMed  CAS  Google Scholar 

  17. Network E-DV (1998) Who checks the checkers? Four validation tools applied to eight atomic resolution structures. J Mol Biol 276(2):313–525. doi:10.1006/jmbi.1997.1540

    Google Scholar 

  18. Holm L, Sander C (1993) Protein structure comparison by alignment of distance matrices. J Mol Biol 233(1):123–138. doi:10.1006/jmbi.1993.1489

    Article  PubMed  CAS  Google Scholar 

  19. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797. doi:10.1016/j.jmb.2007.05.022

    Article  PubMed  CAS  Google Scholar 

  20. Kraulis PJ (1991) Similarity of protein G and ubiquitin. Science 254(5031):581–582. doi:10.1126/science.1658931

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank all members of the Structural Biology Center at Argonne National Laboratory for their help in conducting experiments. This work was supported by National Institutes of Health Grant GM62414, GM074942 and by the US Department of Energy, Office of Biological and Environmental Research, under contract DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Joachimiak.

Additional information

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osipiuk, J., Zhou, M., Moy, S. et al. X-Ray crystal structure of GarR—tartronate semialdehyde reductase from Salmonella typhimurium . J Struct Funct Genomics 10, 249–253 (2009). https://doi.org/10.1007/s10969-009-9059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-009-9059-x

Keywords

Navigation