Journal of Structural and Functional Genomics

, Volume 10, Issue 2, pp 157–163 | Cite as

Crystal structure of fatty acid/phospholipid synthesis protein PlsX from Enterococcus faecalis

  • Y. Kim
  • H. Li
  • T. A. Binkowski
  • D. Holzle
  • A. JoachimiakEmail author


PlsX is a key enzyme that coordinates the production of fatty acids and membrane phospholipids. The plsX gene is co-localized with a bacterial fab gene cluster which encodes several key fatty acid biosynthetic enzymes. The protein is a member of a large, conserved protein family (Pfam02504) found exclusively in bacteria. The PlsX sequence homologues include both phosphate acetyltransferases and phosphate butaryltransferases that catalyze the transfer of an acetyl or butaryl group to orthophosphate. We have determined the crystal structure of PlsX from the human pathogen Enterococcus faecalis. PlsX is a α/β/α sandwich that resembles a Rossmann fold and forms a dimer. A putative catalytic site has been identified within a deep groove on the interface between monomers. This site showed strong surface similarity to epimerases and reductases. It was recently proposed that PlsX is a phosphate acyltransferase that catalyzes the formation of acyl-phosphate from the acyl–acyl carrier protein; however the specific biochemical function of the PlsX protein awaits further experimental scrutiny.


Rossmann fold Fatty acid/phospholipid synthesis 



We wish to thank all members of the Structural Biology Center at Argonne National Laboratory for their help in conducting experiments. This work was supported by National Institutes of Health Grant GM62414, GM074942 and by the U.S. Department of Energy, Office of Biological and Environmental Research, under contract DE-AC02-06CH11357.


  1. 1.
    Paulsen IT et al (2003) Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299:2071–2074PubMedCrossRefGoogle Scholar
  2. 2.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402PubMedCrossRefGoogle Scholar
  3. 3.
    Stols L, Gu M, Dieckman L, Raffen R, Collart FR, Donnelley MI (2002) A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease clevage site. Protein Expr Purif 25:8–15Google Scholar
  4. 4.
    Dieckman L, Gu M, Stols L, Donnelley MI, Collart FR (2002) Protein Expr Purif 25:1–7Google Scholar
  5. 5.
    Walsh MA, Dementieva I, Evans G, Sanishvili R, Joachimiak A (1999) Taking MAD to the extreme: ultrafast protein structure determination. Acta Crystallogr D Biol Crystallogr 55:1168–1173PubMedCrossRefGoogle Scholar
  6. 6.
    Kim Y, Dementieva I, Zhou M, Wu R, Lezondra L, Quartey P, Joachimiak G, Korolev O, Li H, Joachimiak A (2004) Automation of protein purification for structural genomics. J Struct Funct Genomics 5:111–118PubMedCrossRefGoogle Scholar
  7. 7.
    Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921PubMedCrossRefGoogle Scholar
  8. 8.
    Collaborative Computational Project, Number 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760–763CrossRefGoogle Scholar
  9. 9.
    Terwilliger TC (2003) SOLVE and RESOLVE: automated structure solution and density modification. Methods Enzymol 374:22–37PubMedCrossRefGoogle Scholar
  10. 10.
    Morris RJ, Perrakis A, Lamzin VS (2003) ARP/wARP and automatic interpretation of protein electron density maps. Methods Enzymol 374:229–244PubMedCrossRefGoogle Scholar
  11. 11.
    Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291CrossRefGoogle Scholar
  12. 12.
    Pearson WR (2000) Flexible sequence similarity searching with the FASTA3 program package. Methods Mol Biol 132:185–219Google Scholar
  13. 13.
    Binkowski TA, Naghibzadeh S, Liang J (2003) CASTp: computed atlas of surface topography of proteins. Nucleic Acids Res 31:3352–3355PubMedCrossRefGoogle Scholar
  14. 14.
    Binkowski TA, Freeman P, Liang J (2004) pvSOAR: detecting similar surface patterns of pocket and void surfaces of amino acid residues on proteins. Nucleic Acids Res 32:W555–W558PubMedCrossRefGoogle Scholar
  15. 15.
    Deacon AM, Ni YS, Coleman WG Jr, Ealick SE (2000) The crystal structure of ADP-l-glycero-d-mannoheptose 6-epimerase: catalysis with a twist. Structure Fold Des 8(5):453–462PubMedCrossRefGoogle Scholar
  16. 16.
    Rizzi M, Tonetti M, Vigevani P, Sturla L, Bisso A, Flora AD, Bordo D, Bolognesi M (1998) GDP-4-keto-6-deoxy-d-mannose epimerase/reductase from Escherichia coli, a key enzyme in the biosynthesis of GDP-l-fucose, displays the structural characteristics of the RED protein homology superfamily. Structure 6(11):1453–1465PubMedCrossRefGoogle Scholar
  17. 17.
    Jogl G, Tong L (2003) Crystal structure of carnitine acetyltransferase and implications for the catalytic mechanism and fatty acid transport. Cell 112(1):113–122PubMedCrossRefGoogle Scholar
  18. 18.
    Podkovyrov S, Larson TJ (1995) Lipid biosynthetic genes and a ribosomal protein gene are cotranscribed. FEBS Lett 368:429–431PubMedCrossRefGoogle Scholar
  19. 19.
    Bernstein BE, Williams DM, Bressi JC, Kuhn P, Gelb MH, Blackburn GM, Hol WG (1998) A bisubstrate analog induces unexpected conformational changes in phosphoglycerate kinase from Trypanosoma brucei. J Mol Biol 279:1137–1148PubMedCrossRefGoogle Scholar
  20. 20.
    Paoletti L, Lu YJ, Schujman GE, de Mendoza D, Rock CO (2007) Coupling of fatty acid and phospholipid synthesis in Bacillus subtilis. J Bacteriol 189:5816–5824PubMedCrossRefGoogle Scholar
  21. 21.
    Yoshimura M, Oshima T, Ogasawara N (2007) Involvement of the YneS/YgiH and PlsX proteins in phospholipid biosynthesis in both Bacillus subtilis and Escherichia coli. BMC Microbiol 7:69PubMedCrossRefGoogle Scholar

Copyright information

© US Government 2008

Authors and Affiliations

  • Y. Kim
    • 1
  • H. Li
    • 1
  • T. A. Binkowski
    • 1
  • D. Holzle
    • 1
  • A. Joachimiak
    • 1
    Email author
  1. 1.Midwest Center for Structural Genomics and Structural Biology Center, BiosciencesArgonne National LaboratoryArgonneUSA

Personalised recommendations