Adenovirus mediated expression “in vivo” of the chemokine receptor CXCR1

  • J. Sarmiento
  • K. E. Kypreos
  • G. N. Prado
  • K. Suetomi
  • C. Stanzel
  • C. Maxwell
  • D. Shumate
  • M. R. Tandang-Silvas
  • K. Rajarathnam
  • J. NavarroEmail author


A major hurdle in the structural analysis of membrane proteins is the expression of a functional and homogeneous form of the protein. Except for rhodopsin, most G protein-coupled receptors (GPCRs) are endogenously expressed at very low levels. Heterologous expression of GPCRs in bacteria, yeast, insect cells or mammalian cell lines often yields proteins with large amounts of misfolded proteins and heterogeneous posttranslational modifications. Here, we report a novel mammalian “in vivo” system for the expression of the chemokine receptor CXCR1. This receptor was expressed in liver of mice infected with adenovirus encoding CXCR1. Liver plasma membranes from infected mice displayed high-levels of 125I-labeled human interleukin-8 (IL-8) binding. The pharmacological profile of the recombinant CXCR1 expressed “in vivo” was similar to those expressed in neutrophils. We found that the incorporation of the detergent solubilized CXCR1 into phospholipid vesicles in the presence of Gi/Go proteins is required for the reconstitution of 125I-IL-8 binding. On the basis of the presence of the several endogenous His residues and glycosylation moieties in CXCR1 we fractionated the detergent-solubilized plasma membranes by employing Ni- and Concanavalin A-based chromatography. Fractions enriched with CXCR1 were monitored by 125I-IL-8-bound to the receptor and Western blots with anti-CXCR1 antibodies. This robust expression system could be readily applied for the expression of GPCRs and other eukaryotic membrane proteins.


Chemokines GPCR Adenovirus Receptors Reconstitution Protein expression 





Green fluorescence protein






Critical micellar concentration


Human granulocyte chemotactic protein 2


Neutrophil-activating peptide-2


Melanoma growth-stimulating activity



We are grateful to Professor David Konkel of our Department of Biochemistry and Molecular Biology for editing and valuable discussions. This work was supported by the National Institutes of Health R01 GM081798 and the Welch Foundation.


  1. 1.
    Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265. doi: 10.1126/science.1150577 PubMedCrossRefGoogle Scholar
  2. 2.
    Dowell SJ, Brown AJ (2002) Yeast assays for G-protein-coupled receptors. Recept Channels 8:343–352. doi: 10.1080/10606820214647 PubMedCrossRefGoogle Scholar
  3. 3.
    Eroglu C, Cronet P, Panneels V, Beaufils P, Sinning I (2002) Functional reconstitution of purified metabotropic glutamate receptor expressed in the fly eye. EMBO Rep 3:491–496. doi: 10.1093/embo-reports/kvf088 PubMedCrossRefGoogle Scholar
  4. 4.
    Grisshammer R, Averbeck P, Sohal AK (1999) Improved purification of a rat neurotensin receptor expressed in Escherichia coli. Biochem Soc Trans 27:899–903PubMedGoogle Scholar
  5. 5.
    Ishida T, Li W, Liu Z, Kiwada H (2006) Stimulatory effect of polyethylene glycol (PEG) on gene expression in mouse liver following hydrodynamics-based transfection. J Gene Med 8:324–334. doi: 10.1002/jgm.850 PubMedCrossRefGoogle Scholar
  6. 6.
    Kypreos KE, van Dijk KW, van Der Zee A, Havekes LM, Zannis VI (2001) Domains of apolipoprotein E contributing to triglyceride and cholesterol homeostasis in vivo. Carboxy l-terminal region 203–299 promotes hepatic very low density lipoprotein triglyceride secretion. J Biol Chem 276:19778–19786. doi: 10.1074/jbc.M100418200 PubMedCrossRefGoogle Scholar
  7. 7.
    LaRosa GJ, Thomas KM, Kaufmann ME, Mark R, White M, Taylor L, Gray G, Witt D, Navarro J (1992) Amino terminus of the interleukin-8 receptor is a major determinant of receptor subtype specificity. J Biol Chem 267:25402–25406PubMedGoogle Scholar
  8. 8.
    Loisel TP, Ansanay H, St-Onge S, Gay B, Boulanger P, Strosberg AD, Marullo S, Bouvier M (1997) Recovery of homogeneous and functional beta 2-adrenergic receptors from extracellular baculovirus particles. Nat Biotechnol 15:1300–1304. doi: 10.1038/nbt1197-1300 PubMedCrossRefGoogle Scholar
  9. 9.
    Mirzabekov T, Bannert N, Farzan M, Hofmann W, Kolchinsky P, Wu L, Wyatt R, Sodroski J (1999) Enhanced expression, native purification, and characterization of CCR5, a principal HIV-1 coreceptor. J Biol Chem 274:28745–28750. doi: 10.1074/jbc.274.40.28745 PubMedCrossRefGoogle Scholar
  10. 10.
    Okada T, Fujiyoshi Y, Silow M, Navarro J, Landau EM, Shichida Y (2002) Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc Natl Acad Sci USA 99:5982–5987. doi: 10.1073/pnas.082666399 PubMedCrossRefGoogle Scholar
  11. 11.
    Oprian DD, Molday RS, Kaufman RJ, Khorana HG (1987) Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proc Natl Acad Sci USA 84:8874–8878. doi: 10.1073/pnas.84.24.8874 PubMedCrossRefGoogle Scholar
  12. 12.
    Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745. doi: 10.1126/science.289.5480.739 PubMedCrossRefGoogle Scholar
  13. 13.
    Prado GN, Suetomi K, Shumate D, Maxwell C, Ravindran A, Rajarathnam K, Navarro J (2007) Chemokine signaling specificity: essential role for the N-terminal domain of chemokine receptors. Biochemistry 46:8961–8968. doi: 10.1021/bi7004043 PubMedCrossRefGoogle Scholar
  14. 14.
    Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387. doi: 10.1038/nature06325 PubMedCrossRefGoogle Scholar
  15. 15.
    Reeves PJ, Kim JM, Khorana HG (2002) Structure and function in rhodopsin: a tetracycline-inducible system in stable mammalian cell lines for high-level expression of opsin mutants. Proc Natl Acad Sci USA 99:13413–13418. doi: 10.1073/pnas.212519199 PubMedCrossRefGoogle Scholar
  16. 16.
    Reeves PJ, Callewaert N, Contreras R, Khorana HG (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci USA 99:13419–13424. doi: 10.1073/pnas.212519299 PubMedCrossRefGoogle Scholar
  17. 17.
    Ruot B, Breuille D, Rambourdin F, Bayle G, Capitan P, Obled C (2000) Synthesis rate of plasma albumin is a good indicator of liver albumin synthesis in sepsis. Am J Physiol Endocrinol Metab 279:E244–E251PubMedGoogle Scholar
  18. 18.
    Sarkar CA, Dodevski I, Kenig M, Dudli S, Mohr A, Hermans E, Plückthun A (2008) Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity. Proc Natl Acad Sci USA 105:14808–14813. doi: 10.1073/pnas.0803103105 PubMedCrossRefGoogle Scholar
  19. 19.
    Sarramegna V, Talmont F, Demange P, Milon A (2003) Heterologous expression of G-protein-coupled receptors: comparison of expression systems fron the standpoint of large-scale production and purification. Cell Mol Life Sci 60:1529–1546. doi: 10.1007/s00018-003-3168-7 PubMedCrossRefGoogle Scholar
  20. 20.
    Sternweis PC, Robishaw JD (1984) Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J Biol Chem 259:13806–13813PubMedGoogle Scholar
  21. 21.
    Suzuki H, Prado GN, Wilkinson N, Navarro J (1994) The N terminus of interleukin-8 (IL-8) receptor confers high affinity binding to human IL-8. J Biol Chem 269:18263–18266PubMedGoogle Scholar
  22. 22.
    Telford JN, Langworthy TA, Racker E (1984) Three proton pumps, morphology and movements. J Bioenerg Biomembr 16:335–351. doi: 10.1007/BF00743230 PubMedCrossRefGoogle Scholar
  23. 23.
    Thomas KM, Taylor L, Navarro J (1991) The interleukin-8 receptor is encoded by a neutrophil-specific cDNA clone, F3R. J Biol Chem 266:14839–14841PubMedGoogle Scholar
  24. 24.
    Thomas KM, Taylor L, Prado G, Romero J, Moser B, Car B, Walz A, Baggiolini M, Navarro J (1994) Functional and ligand binding specificity of the rabbit neutrophil IL-8 receptor. J Immunol 152:2496–2500PubMedGoogle Scholar
  25. 25.
    Viola A, Luster AD (2008) Chemokines and their receptors: drug targets in immunity and inflammation. Annu Rev Pharmacol Toxicol 48:171–197. doi: 10.1146/annurev.pharmtox.48.121806.154841 PubMedCrossRefGoogle Scholar
  26. 26.
    Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491. doi: 10.1038/nature07101 PubMedCrossRefGoogle Scholar
  27. 27.
    Williamson K, Dickey BF, Pyun HY, Navarro J (1988) Solubilization and reconstitution of the formylmethionylleucylphenylalanine receptor coupled to guanine nucleotide regulatory protein. Biochemistry 27:5371–5377. doi: 10.1021/bi00414a062 PubMedCrossRefGoogle Scholar
  28. 28.
    Yang M, Baranov E, Moossa AR, Penman S, Hoffman RM (2000) Visualizing gene expression by whole-body fluorescence imaging. Proc Natl Acad Sci USA 97:12278–12282. doi: 10.1073/pnas.97.22.12278 PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang L, Salom D, He J, Okun A, Ballesteros J, Palczewski K, Li N (2005) Expression of functional G protein-coupled receptors in photoreceptors of transgenic Xenopus laevis. Biochemistry 44:14509–14518. doi: 10.1021/bi051386z PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • J. Sarmiento
    • 1
    • 2
  • K. E. Kypreos
    • 3
  • G. N. Prado
    • 1
    • 2
  • K. Suetomi
    • 1
    • 2
  • C. Stanzel
    • 1
    • 2
  • C. Maxwell
    • 1
    • 2
  • D. Shumate
    • 1
    • 2
  • M. R. Tandang-Silvas
    • 1
    • 2
  • K. Rajarathnam
    • 2
    • 4
  • J. Navarro
    • 1
    • 2
    Email author
  1. 1.Department of Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonUSA
  2. 2.Sealy Centers of Molecular Medicine and Structural Biology and Molecular BiophysicsUniversity of Texas Medical BranchGalvestonUSA
  3. 3.Pharmacology UnitUniversity of Patras Medical SchoolPanepistimioupolis RioGreece
  4. 4.Department of Biochemistry and Molecular BiologyUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations