Skip to main content
Log in

225Ac production via 226Ra (μ, n ν) 225Fr reaction with 226Ra target

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Actinium-225 (225Ac) has attracted global attention due to its applications in cancer therapy. A new 225Ac production method is proposed by muon nuclear-capture reactions with negative muons (μ) irradiating on a 226Ra target. The 225Fr is produced by 226Ra (μ, n ν) 225Fr reaction and decays to 225Ra. The 225Ra subsequently decays to 225Ac. The method produces no carrier-added 225Ac, and 213Bi from a 225Ac-213Bi generator. The production method by muon nuclear-capture reactions with the 226Ra target is described. The radioactivity of 225Ac and 213Bi are calculated assuming the reaction branching ratio of 226Ra (μ, n ν) 225Fr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. World Nuclear Association, Radioisotopes in medicine, https://www.world-nuclear.org/information-library/non-power-nuclear applications/radioisotopes-research/radioisotopes-in-medicine.aspx

  2. Kim YS, Brechbiel MW (2012) An overview of targeted alpha therapy. Tumor Biol 33:573–590

    Article  CAS  Google Scholar 

  3. Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, Mottaghy F, Kopka K, Apostolidis C, Haberkorn U, Morgenstern A (2016) 225Ac-PSMA-617 for PSMA-targeted a-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med 57:1941–1944

    Article  CAS  PubMed  Google Scholar 

  4. Robertson AKH, Ramogida CF, Schaffer P, Radchenko V (2018) Development of 225Ac radiopharmaceuticals: TRIUMF perspectives and experiences. Curr Radiopharm 11:156–172

    Article  PubMed  PubMed Central  Google Scholar 

  5. Morgenstern A, Apostolidis C, Kratochwi C, Sathekge M, Krolicki L, Bruchertseifer F (2018) An overview of targeted alpha therapy with 225Actinium and 213Bismuth. Curr Radiopharm 11:200–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qaim SM (2020) Medical radionuclei production. In: Gruyter D (Ed.), Science and technology

  7. Radchenko V, Morgenstern A, Jalilian AR, Ramogida CF, Cutler C, Duchemin C, Hoehr C, Haddad F, Bruchertseifer F, Gausemel H, Yang H, Osso JA, Washiyama K, Czerwinski K, Leufgen K, Pruszyński M, Valzdorf O, Causey P, Schaffer P, Perron R, Maxim S, Wilbur DS, Stora T, Li Y (2021) Production and supply of α-particle-emitting radionuclides for targeted α-therapy. J Nucl Med 62:1495–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Firestone RB (1996) Table of isotopes. CD-ROM Eighth Edition, Version 1.0

  9. Mirzadeh S (1998) Generator -produced alpha-emitters. Appl Radiat Isot 49:345–349

    Article  CAS  Google Scholar 

  10. Apostolidis C, Molinet R, Rasmussen G, Morgenstern A (2005) Production of Ac-225 from Th-229 for targeted α therapy. Anal Chem 77:6288–6291

    Article  CAS  PubMed  Google Scholar 

  11. Hogle S, Boll RA, Murphy K, Denton D, Owens A, Havelock TJ, Garland M, Mirzadeh S (2016) Reactor production of Thorium-229. Appl Radiat Isot 114:19–27

    Article  CAS  PubMed  Google Scholar 

  12. Maslov OD, Sabel’nikov AV, Dmitriev SN (2006) Preparation of 225Ac by 226Ra (γ, n) photonuclear reaction on an electron accelerator MT-25 microtron. Radiochemistry 48:195–197

    Article  CAS  Google Scholar 

  13. Melville G, Meriarty H, Metcalfe P, Knittel T, Allen BJ (2007) Production of Ac-225 for cancer therapy by photon-induced transmutation of Ra-226. Appl Radiat Isot 65:1014–1022

    Article  CAS  PubMed  Google Scholar 

  14. Melville G, Allen BJ (2009) Cyclotron and linac production of Ac-225. Appl Radiat Isot 67:549–555

    Article  CAS  PubMed  Google Scholar 

  15. Apostolidis C, Molinet R, McGinley J, Abbas K, Möllenbeck A, Morgenstern A (2005) Cyclotron production of Ac-225 for targeted alpha therapy. Appl Radiat Isot 62:383–387

    Article  CAS  PubMed  Google Scholar 

  16. Engle JW, Ignatyuk AV, Capote R, Carlson BV, Hermanne A, Kellett MA, Kibédi T, Kim G, Kondev FG, Hussain M, Lebeda O, Luca A, Nagai Y, Naik H, Nichols AL, Nortier FM, Suryanarayana SV, Takács S, Tárkányi FT, Vercelli M (2019) Recommended nuclear data for the production of selected therapeutic radionuclides. Nucl Data Sheet 155:56–74

    Article  CAS  Google Scholar 

  17. Zhuikov BL, Kalmykov SN, Ermolaev SV, Aliev RA, Kokhanyuk VM, Matushko VL, Tananaev IG, Myasoedov BF (2011) Production of 225Ac and 223Ra by irradiation of Th with accelerated protons. Radiochemistry 53:73–80

    Article  CAS  Google Scholar 

  18. Ermolaev SV, Zhuikov BL, Kokhanyuk VM, Matushko VL, Kalmykov SN, Aliev RA, Tananaev IG, Myasoedov BF (2012) Production of actinium, thorium and radium isotopes from natural thorium irradiated with protons up to 141 MeV. Radiochim Acta 100:223–229

    Article  CAS  Google Scholar 

  19. Weidner JW, Mashnik SG, John KD, Hemez FM, Ballard B, Bach H, Birnbaum ER, Bitteker LJ, Couture A, Dry D, Fassbender ME, Gulley MS, Jackman KR, Ullmann JL, Wolfsberg LE, Nortier FM (2012) Proton-induced cross sections relevant to production of 225Ac and 223Ra in natural thorium targets below 200 MeV. Appl Radiat Isot 70:2602–2607

    Article  CAS  PubMed  Google Scholar 

  20. Weidner JW, Mashnik SG, John KD, Ballard B, Birnbaum ER, Bitteker LJ, Couture A, Fassbender ME, Goff GS, Gritzo R, Hemez FM, Runde W, Ullmann JL, Wolfsberg LE, Nortier FM (2012) 225Ac and 223Ra production via 800 MeV proton irradiation of natural thorium targets. Appl Radiat Isot 70:2590–2595

    Article  CAS  PubMed  Google Scholar 

  21. Mastren T, Radchenko V, Owens A, Copping R, Boll R, Griswold R, Mirzadeh S, Wyant LE, Brugh M, Engle JW, Nortier FM, Birnbaum ER, John KD, Fassbender JME (2017) Simultaneous separation of actinium and radium isotopes from a proton irradiated thorium matrix. Scient Rep 7:8216

    Article  Google Scholar 

  22. Matsuzaki T (2014) Radioactive materials generated by muon irradiation, and production method thereof. Patent JP2014196997A

  23. Matsuzaki T, Ishida K, Nagamine K, Watanabe I, Eaton GH, Williams WG (2001) The RIKEN-RAL pulsed muon facility. Nucl Instr Meth A 465:365–383

    Article  CAS  Google Scholar 

  24. The Paul Scherrer Institute, The PSI proton accelerator. https://www.psi.ch/media/the-psi-proton-accelerator

  25. TRIUMF, Main cyclotron & beam lines. https://www.triumf.ca/research-program/research-facilities/main-cyclotron-beam-lines

  26. Rutherford Appleton Laboratory, ISIS neutron and muon source. https://stfc.ukri.org/research/our-science-facilities/isis-neutron-and-muon-source/

  27. J-PARC, Materials and life science experimental facility. https://j-parc.jp/c/en/facilities/mlf/index.html

  28. Niikura M, Saito TY, Matsuzaki T, Ishida K, Hiller A (2024) Measurement of the production branching ratios following nuclear muon capture for palladium isotopes using the in-beam activation method. Phys Rev C 109:014328

    Article  CAS  Google Scholar 

  29. Measday DF (2001) The nuclear physics of muon capture. Phys Rep 354:243–409

    Article  CAS  Google Scholar 

  30. Measday DF, Stocki TJ, Tam H (2007) γ rays from muon capture in I, Au, and Bi. Phys Rev C 75:045501

    Article  Google Scholar 

  31. Backenstoss G, Charalambus S, Daniel H, Hamilton WD, Lynen U, Von Der Malsburg C, Poelz G, Povel HP (1971) Nuclear γ rays following muon capture. Nucl Phys A. https://doi.org/10.1016/0375-9474(71)90253-3

    Article  Google Scholar 

  32. Budick B, Anigstein R, Kast JW (1982) Nuclear excitation in the 207Pb (μ-, ν6n) 201Tl. Phys Lett 110B:375–378

    Article  CAS  Google Scholar 

  33. Singer P (1962) Neutron emission following muon capture in heavy nuclei. Nuovo Cim 23:669–689

    Article  Google Scholar 

  34. Fricke G, Bernhardt C, Heilig K, Schaller LA, Schellenberg L, Shera EB, De Jager CW (1995) Nuclear ground state charge radii from electromagnetic interactions. At Data Nucl Data Tables 60:177–285

    Article  CAS  Google Scholar 

  35. McDevitt MR, Finn RD, Sgouros G, Ma D, Scheinberg DA (1999) An 225Ac/213Bigenerator system for therapeutic clinical applications: construction and operation. Appl Radiat Isot 50:895–904

    Article  CAS  PubMed  Google Scholar 

  36. Morgenstern A, Bruchertseifer F, Apostolidis C (2012) Bismuth-213 and actinium-225 generator performance and evolving applications of two generator-derived alpha-emitting radioisotopes. Curr Radiopharm 5:221–227

    Article  CAS  PubMed  Google Scholar 

  37. 2022 Actinium-225 User Group Meeting - DOE isotope program. https://www.youtube.com/watch?v=eR1k0AkPrlI

  38. Actinium-225 (Thorium-229 decay product) Product information. https://isotopes.gov/sites/default/files/2023-07/Ac-225%20Thorium%20Decay.pdf

  39. μE1 beam line, Paul Sherrer Institute (PSI). https://www.psi.ch/en/smus/e1

  40. Fermi Research Alliance, FRA (2014) Mu2e technical design report. Fermilab-TM-2594

  41. Miscetti S et al. (2020) Status of the Mu2e experiment at Fermilab. Fermilasb-conference-20–389-V

  42. The COMET Collaboration (2020) COMET Phase-I technical report. Program theory expermental physics, 033C01: 102

  43. Reduction and resource recycling of high-level radioactive wastes through. Nuclear transmutation. https://www.jst.go.jp/impact/en/program/08.html

Download references

Acknowledgements

A part of the research was funded by the ImPACT Program of the Council for Science, Technology, and Innovation (Cabinet Office, Government of Japan) [43].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teiichiro Matsuzaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuzaki, T., Sakurai, H. 225Ac production via 226Ra (μ, n ν) 225Fr reaction with 226Ra target. J Radioanal Nucl Chem (2024). https://doi.org/10.1007/s10967-024-09514-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10967-024-09514-6

Keywords

Navigation