Skip to main content
Log in

Comparison of some of the analytical techniques and their applications to environmental radiostrontium determination

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The knowledge about behavior of 90Sr in environment is of importance to prevent and control contamination. A large number of analytical methods have been developed for the determination of 90Sr in environmental samples. The conducted study was focused on interpretation and evaluation of the results obtained using three radiochemical procedures for the separation of 90Sr and/or 90Y including the classical procedures based on a series of semi-selective precipitations, the ion-exchange procedure and the use of fuming nitric acid. The acquired results showed a good agreement between the compared methods within the terms of accuracy and precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2010) Sources and effects of ionizing radiation, UNSCEAR 2008, Report to the General Assembly with Scientific Annexes. United Nations, New York

  2. Chernobyl Accident 1986, World Nuclear Association. https://world-nuclear.org/information-library/safety-and-security/safety-of-plants/chernobyl-accident.aspx. Accessed 15 March 2024

  3. Hirose K, Povinec PP (2020) 90Sr and 137Cs as tracers of oceanic eddies in the sea of Japan/East sea. J Environ Radioact 216:106179

    Article  CAS  PubMed  Google Scholar 

  4. International Atomic Energy Agency (IAEA) (1996) One Decade After Chernobyl: Summing up the Consequences of the Accident, Proceedings of an International Conference Held in Vienna. IAEA, Vienna

  5. Hirose K, Igarashi Y, Aoyama M (2008) Analysis of the 50-year records of the atmospheric deposition of long-lived radionuclides in Japan. Appl Radiat Isot 66:1675–1678

    Article  CAS  PubMed  Google Scholar 

  6. Mirzoyeva NY, Egorov VN, Polikarpov GG (2013) Distribution and migration of 90Sr in components of the Dnieper River basin and the Black Sea ecosystems after the Chernobyl NPP accident. J Environ Radioact 125:27–35

    Article  CAS  PubMed  Google Scholar 

  7. Zhou Z, Ren H, Zhou L, Wang P, Lou X, Zou H, Cao Y (2023) Recent development on determination of low-level 90Sr in environmental and biological samples: a review. Molecules 28:90

    Article  CAS  Google Scholar 

  8. International Atomic Energy Agency (IAEA) (2005) Programmes and Systems for Source and Environmental Radiation Monitoring, Safety Report Series No. 64. IAEA, Vienna

  9. Chamard P, Velasco RH, Belli M, Silvestro GD, Ingrao G, Sansone U (1993) Cesium-137 and strontium-90 distribution in a soil profile. Sci Total Environ 136:251–258

    Article  CAS  Google Scholar 

  10. Quang NH, Long NQ, Lieu DB, Mai TT, Ha NT, Nhan DD, Hien PD (2004) 239+240Pu, 90Sr and 137Cs inventories in surface soils of Vietnam. J Environ Radioactiv 75:329–337

    Article  CAS  Google Scholar 

  11. Matishov GG, Matishov DG, Kasatkina NE, Usyagina IS, Kuklin MM (2005) Analysis of distribution of artificial radionuclides in the ecological system of Barents Sea. Dokl Biol Sci 404:375–378

    Article  CAS  PubMed  Google Scholar 

  12. Fernandez JM, Piault E, Macouillard D, Juncos C (2006) Forty years of 90Sr in situ migration: importance of soil characterization in modeling transport phenomena. J Environ Radioactiv 87:209–226

    Article  CAS  Google Scholar 

  13. Watanabe T, Tsuchiya N, Oura Y, Ebihara M, Inoue C, Hirano N, Yamada R, Yamasaki S, Okamoto A, Watanabe F, Nunohara K (2012) Distribution of artificial radionuclides (110mAg, 129mTe, 134Cs, 137Cs) in surface soils from Miyagi Prefecture, northeast Japan, following the 2011 Fukushima Dai-ichi nuclear power plant accident. Geochem J 46:279–285

    Article  CAS  Google Scholar 

  14. Samad OE, Baydoun R, Nsouli B, Darwish T (2013) Determination of natural and artificial radioactivity in soil at North Lebanon province. J Environ Radioactiv 125:36–39

    Article  Google Scholar 

  15. Lokas E, Bartmiński P, Wachniev P, Mietelski JW, Kawiak T, Srodoń J (2014) Sources and pathways of artificial radionuclides to soils at a High Arctic site. Environ Sci Pollut Res Int 21:12479–12493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. LjJ J-M, Dragović RM, Đorđević MM, Đolić MB, Onjia AE, Dragović SD, Bačić GG (2014) Spatial variability of 137Cs in the soil of Belgrade region (Serbia). Chem Ind 68:449–455

    Article  Google Scholar 

  17. Guillen J, Baeza A, Corbacho JA, Munoz-Munoz JG (2015) Migration of 137Cs, 90Sr, and 239+240Pu in Mediterranean forests: influence of bioavailability and association with organic acids in soil. J Environ Radioactiv 144:96–102

    Article  CAS  Google Scholar 

  18. Kavasi N, Sahoo SK, Sorimachi A, Tokonami S, Aono T, Yoshida S (2015) Measurement of 90Sr in soil samples affected by the Fukushima Daiichi Nuclear Power Plant accident. J Radioanal Nucl Ch 303:2565–2569

    CAS  Google Scholar 

  19. Mietelski JW, Kierepko R, Łokas E, Cwanek A, Kleszcz K, Tomankiewicz E, Mróz T, Anczkiewicz R, Szałkowski M, Wąs B, Bartyzel M, Misiak R (2016) Combined, sequential procedure for determination of 137Cs, 40K, 63Ni, 90Sr, 230,232Th, 234,238U, 237Np, 238,239+240Pu and 241Am applied for study on contamination of soils near Żarnowiec Lake (northern Poland). J Radioanal Nucl Ch 310:661–670

    Article  CAS  Google Scholar 

  20. Al-Qasmi H, Law GTW, Fifield LK, Livens FR (2016) Origin of artificial radionuclides in soil and sediment from North Wales. J Environ Radioactiv 151:244–249

    Article  CAS  Google Scholar 

  21. Cwanek A, Lokas E, Dinh CN, Zagórski P, Singh SM, Szufa K, Tomankiewicz E (2021) 90Sr level and behaviour in the terrestrial environment of Spitsbergen. J Radioanal Nucl Ch 327:485–494

    Article  CAS  Google Scholar 

  22. Dulanská S, Coha I, Silliková V, Goneková Z, Horváthová B, Nodilo M, Grahek Ž (2020) Sequential determination of 90Sr and 210Pb in bone samples using molecular recognition technology product AnaLig® Sr-01. Microchem J 157:105123

    Article  Google Scholar 

  23. Aba A, Ismaeel A, Al-Boloushi O (2021) Estimation of radiostrontium, radiocesium and radiobarium transfer from arid soil to plant: A case study from Kuwait. Nucl Eng Technol 53:960–966

    Article  CAS  Google Scholar 

  24. Froidevaux P, Friedrich-Benet K, Valley JF (2004) Simple determination of 90Sr in water in environmental radioactivity survey. J Radioanal Nucl Ch 261:295–299

    Article  CAS  Google Scholar 

  25. Jakopič R, Lj B (2005) Tracer Studies on Sr Resin and Determination of 90Sr in Environmental Samples. Acta Chim Slov 52:297–302

    Google Scholar 

  26. Acar R, Acar O (2004) Determination of 90Sr Accumulation in Human Teeth. Turk J Chem 28:67–74

    CAS  Google Scholar 

  27. Shao Y, Yang G, Tazoe H, Ma L, Yamada M, Xu D (2018) A review of measurement methodologies and their applications to environmental 90Sr. J Environ Radioactiv 192:321–333

    Article  CAS  Google Scholar 

  28. Report on the intercomparison run for the determination of radionuclides in soils IAEA-326 and IAEA-327, International Atomic Energy Agency. https://inis.iaea.org/collection/NCLCollectionStore/_Public/32/042/32042411.pdf?r=1. Accessed 14 March 2024

  29. Report on the intercomparison run IAEA-156 radionuclides in clover, International Atomic EnergyAgency. https://inis.iaea.org/collection/NCLCollectionStore/_Public/22/049/22049616.pdf. Accessed 14 March 2024

  30. https://www.eraqc.com/radiochemistry-products/producttype=pt/. Accessed 14 March 2024

  31. International Conference on Harmonization (ICH) (1996) Guidelines Q2B Validation of Analytical Procedures: Methodology. ICH, Geneva, Switzerland

  32. Sarap NB, Janković MM, Pantelić GK (2014) Validation of radiochemical method for the determination of 90Sr in environmental samples. Water Air Soil Pollut 225:2003–2013

    Article  Google Scholar 

  33. Grahek Ž, Dulanská S, Karanović G, Coha I, Tucaković I, Nodilo M, Mátel Ľ (2018) Comparison of different methodologies for the 90Sr determination in environmental samples. J Environ Radioactiv 181:18–31

    Article  CAS  Google Scholar 

  34. Štrok M, Repinc U, Smodiš B (2008) Calibration and validation of a proportional counter for determining beta emitters. J Power Energy 2:573–581

    Google Scholar 

  35. Alvarez A, Navarro N, Salvador S (1995) New method for 90Sr determination in liquid samples. J Radioanal Nucl Ch 191:315–322

    Article  CAS  Google Scholar 

  36. International Organization for Standardization (ISO) (2010) Determination of the Characteristic Limits (Decision Threshold, Detection Limit and Limits of the Confidence Interval) for Measurements of Ionizing Radiation – Fundamentals and Application, ISO 11929. Switzerland, Geneva

    Google Scholar 

  37. International Organization for Standardization (ISO) (2015) Statistical methods for use in proficiency testing by interlaboratory comparison, ISO 13528. Switzerland, Geneva

    Google Scholar 

  38. International Atomic Energy Agency (IAEA) (2015) World-wide open proficiency test on the determination of anthropogenic and natural radionuclides in water, Rice and Soil Samples, Report on the IAEA-TEL-2015-03. IAEA, Vienna

    Google Scholar 

  39. Rondahl SH, Ramebäck H (2018) Evaluation of different methods for measuring 89Sr and 90Sr: measurement uncertainty for the different methods as a function of the activity ratio. Appl Radiat Isotopes 140:87–95

    Article  CAS  Google Scholar 

  40. Onjia A, Vasiljević T, Čokeša Đ, Laušević M (2002) Osvežimo naše znanje Validacija hromatografske analize. Chem Ind 56:76–79

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia, based on Annex of the contract, number: 451-03-66/2024-03/200017 and bilateral project RS-HR/2016-09-38. The support by the Slovenian Research Agency (research programme P2-0075 and bilateral project BI-RS/16-17-029) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataša B. Sarap.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarap, N.B., Nodilo, M., Štrok, M. et al. Comparison of some of the analytical techniques and their applications to environmental radiostrontium determination. J Radioanal Nucl Chem (2024). https://doi.org/10.1007/s10967-024-09499-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10967-024-09499-2

Keywords

Navigation