Skip to main content
Log in

Potential of [99mTc] Tc-IONPs in SPECT: a systematic review on efficiency and accumulation rates

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The aim of this study is to compare the efficiency and accumulation of 99mTc attached to iron oxide nanoparticles (IONPs) for use in the SPECT imaging. A comprehensive literature search identified 13 relevant studies, and the maximum absorbed dose per gram (ID/g) of [99mTc] Tc-IONPs in various organs at different time intervals was analyzed. The findings showed the distribution patterns of the compounds in each organ, emphasizing the significance of coating and nanoparticle size for optimal imaging results. By selecting the appropriate coating and nanoparticle size, imaging quality and accuracy can be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Singh A, Amiji MM (2022) Application of nanotechnology in medical diagnosis and imaging. Curr Opin Biotechnol 74:241–246

    Article  CAS  PubMed  Google Scholar 

  2. Song W, Anselmo AC, Huang L (2019) Nanotechnology intervention of the microbiome for cancer therapy. Nat Nanotechnol 14(12):1093–1103

    Article  CAS  PubMed  Google Scholar 

  3. Sahu T, Ratre YK, Chauhan S, Bhaskar L, Nair MP, Verma HK (2021) Nanotechnology based drug delivery system: current strategies and emerging therapeutic potential for medical science. J Drug Deliv Sci Technol 63:102487

    Article  CAS  Google Scholar 

  4. Majidinia M, Mirza-Aghazadeh-Attari M, Rahimi M, Mihanfar A, Karimian A, Safa A, Yousefi B (2020) Overcoming multidrug resistance in cancer: recent progress in nanotechnology and new horizons. IUBMB Life 72(5):855–871

    Article  CAS  PubMed  Google Scholar 

  5. Abdussalam-Mohammed W (2019) Review of therapeutic applications of nanotechnology in medicine field and its side effects. J Chem Rev 1(3):243–251

    Article  Google Scholar 

  6. Kumar CSSR, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63(9):789–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schladt TD, Schneider K, Schild H, Tremel W (2011) Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Trans 40(24):6315–6343

    Article  CAS  PubMed  Google Scholar 

  8. Hoet PHM, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles–known and unknown health risks. J Nanobiotechnol 2:1–15

    Article  Google Scholar 

  9. Martin T, de Rosales R, Tavaré R, Glaria A, Varma G, Protti A, Blower PJ (2011) 99mTc-bisphosphonate-iron oxide nanoparticle conjugates for dual-modality biomedical imaging. Bioconjug Chem 22(3):455–465

    Article  Google Scholar 

  10. Stamopoulos D, Manios E, Gogola V, Benaki D, Bouziotis P, Niarchos D, Pissas M (2008) Bare and protein-conjugated Fe(3)O(4) ferromagnetic nanoparticles for utilization in magnetically assisted hemodialysis: biocompatibility with human blood cells. Nanotechnology 19(50):505101. https://doi.org/10.1088/0957-4484/19/50/505101

    Article  CAS  PubMed  Google Scholar 

  11. Stamopoulos D, Gogola V, Manios E, Gourni E, Benaki D, Niarchos D, Pissas M (2009) Biocompatibility and solubility of Fe3O4-BSA conjugates with human blood. Curr Nanosci. https://doi.org/10.2174/157341309788185424

    Article  Google Scholar 

  12. Karageorgou M-A, Bouziotis P, Vranješ-Djurić S, Stamopoulos D (2020) Hemocompatibility of gallium-68 labeled iron oxide nanoparticles coated with 2,3-dicarboxypropane-1,1-diphosphonic acid. Mater Sci Eng: C 115:111121. https://doi.org/10.1016/j.msec.2020.111121

    Article  CAS  Google Scholar 

  13. Stamopoulos D, Manios E, Gogola V, Niarchos D, Pissas M (2010) On the biocompatibility of Fe3O4 ferromagnetic nanoparticles with human blood cells. J Nanosci Nanotechnol 10(9):6110–6115

    Article  CAS  PubMed  Google Scholar 

  14. Karageorgou M-A, Stamopoulos D (2021) Immunocompatibility of a new dual modality contrast agent based on radiolabeled iron-oxide nanoparticles. Sci Rep 11(1):9753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, Lewis J (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol 152(1):167–173

    Article  CAS  Google Scholar 

  16. Soetaert F, Korangath P, Serantes D, Fiering S, Ivkov R (2020) Cancer therapy with iron oxide nanoparticles: agents of thermal and immune therapies. Adv Drug Deliv Rev 163:65–83

    Article  PubMed  Google Scholar 

  17. Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, Lammers T (2019) Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 138:302–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ling D, Lee N, Hyeon T (2015) Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc Chem Res 48(5):1276–1285

    Article  CAS  PubMed  Google Scholar 

  19. Hu Y, Mignani S, Majoral J-P, Shen M, Shi X (2018) Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem Soc Rev 47(5):1874–1900

    Article  CAS  PubMed  Google Scholar 

  20. Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60(11):1252–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xie J, Huang J, Li X, Sun S, Chen X (2009) Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem 16(10):1278–1294

    Article  CAS  PubMed  Google Scholar 

  22. Baker M (2010) The whole picture. Nature 463(7283):977–979

    Article  CAS  PubMed  Google Scholar 

  23. Ha S, Hamamura MJ, Roeck WW, Muftuler LT, Nalcioglu O (2010) Development of a new RF coil and γ-ray radiation shielding assembly for improved MR image quality in SPECT/MRI. Phys Med Biol 55(9):2495

    Article  PubMed  Google Scholar 

  24. Willowson K, Bailey DL, Baldock C (2008) Quantitative SPECT reconstruction using CT-derived corrections. Phys Med Biol 53(12):3099

    Article  PubMed  Google Scholar 

  25. Dutour A, Monteil J, Paraf F, Charissoux JL, Kaletta C, Sauer B, Rigaud M (2005) Endostatin cDNA/cationic liposome complexes as a promising therapy to prevent lung metastases in osteosarcoma: study in a human-like rat orthotopic tumor. Mol Ther 11(2):311–319

    Article  CAS  PubMed  Google Scholar 

  26. Popa T, Ibanez L, Levy E, White A, Bruno J, Cleary K (2006) Tumor volume measurement and volume measurement comparison plug-ins for VolView using ITK. Med Imaging 2006 V Image-Guided Proced Display 6141:395–402

    Google Scholar 

  27. Schillaci O, Spanu A, Tagliabue L, Filippi L, Danieli R, Palumbo B, Madeddu G (2009) SPECT/CT with a hybrid imaging system in the study of lower gastrointestinal bleeding with technetium-99m red blood cells. Q J Nucl Med Mol Imaging 53(3):281

    CAS  PubMed  Google Scholar 

  28. Mariani G, Bruselli L, Kuwert T, Kim EE, Flotats A, Israel O, Watanabe N (2010) A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging 37:1959–1985

    Article  PubMed  Google Scholar 

  29. Kaur A, Verma N, Singh B, Kumar A, Kumari S, De A, Singh V (2023) Quantitative liver SPECT/CT is a novel tool to assess liver function, prognosis, and response to treatment in cirrhosis. Front Med 10:1118531

    Article  Google Scholar 

  30. Rahimian A, Etehadtavakol M, Moslehi M, Ng EYK (2023) Myocardial perfusion single-photon emission computed tomography (SPECT) image denoising: a comparative study. Diagnostics 13(4):611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rahimian A, Etehadtavakol M, Moslehi M, Ng EYK (2022) Comparing different algorithms for the pseudo-coloring of myocardial perfusion single-photon emission computed tomography images. J Imaging 8(12):331

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mushtaq S, Bibi A, Park JE, Jeon J (2021) Recent progress in technetium-99m-labeled nanoparticles for molecular imaging and cancer therapy. Nanomaterials 11(11):3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Loudos G, Kagadis GC, Psimadas D (2011) Current status and future perspectives of in vivo small animal imaging using radiolabeled nanoparticles. Eur J Radiol 78(2):287–295

    Article  PubMed  Google Scholar 

  34. Tsiapa I, Efthimiadou EK, Fragogeorgi E, Loudos G, Varvarigou AD, Bouziotis P, Kagadis GC (2014) 99mTc-labeled aminosilane-coated iron oxide nanoparticles for molecular imaging of ανβ3-mediated tumor expression and feasibility for hyperthermia treatment. J Colloid Interface Sci 433:163–175. https://doi.org/10.1016/j.jcis.2014.07.032

    Article  CAS  PubMed  Google Scholar 

  35. Bouziotis P, Psimadas D, Tsotakos T, Stamopoulos D, Tsoukalas C (2012) Radiolabeled iron oxide nanoparticles as dual-modality SPECT/MRI and PET/MRI agents. Curr Top Med Chem 12(23):2694–2702

    Article  CAS  PubMed  Google Scholar 

  36. Karageorgou M-A, Bouziotis P, Stiliaris E, Stamopoulos D (2023) Radiolabeled iron oxide nanoparticles as dual modality contrast agents in SPECT/MRI and PET/MRI. Nanomaterials 13(3):503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Swidan MM, Khowessah OM, El-Motaleb MA, El-Bary AA, El-Kolaly MT, Sakr TM (2019) Iron oxide nanoparticulate system as a cornerstone in the effective delivery of Tc-99 m radionuclide: a potential molecular imaging probe for tumor diagnosis. DARU, J Pharm Sci 27(1):49–58. https://doi.org/10.1007/s40199-019-00241-y

    Article  CAS  Google Scholar 

  38. Cui X, Mathe D, Kovács N, Horváth I, Jauregui-Osoro M, Martin T, de Rosales R, Krüger D (2016) Synthesis, characterization, and application of core–shell Co0. 16Fe2. 84O4@ NaYF4 (Yb, Er) and Fe3O4@ NaYF4 (Yb, Tm) nanoparticle as Trimodal (MRI, PET/SPECT, and optical) imaging agents. Bioconjug Chem 27(2):319–328

    Article  CAS  PubMed  Google Scholar 

  39. Polyak A, Ross TL (2018) Nanoparticles for SPECT and PET imaging: towards personalized medicine and theranostics. Curr Med Chem 25(34):4328–4353

    Article  CAS  PubMed  Google Scholar 

  40. Wang JTW, Cabana L, Bourgognon M, Kafa H, Protti A, Venner K, Al-Jamal KT (2014) Magnetically decorated multiwalled carbon nanotubes as dual MRI and SPECT contrast agents. Adv Funct Mater 24(13):1880–1894. https://doi.org/10.1002/adfm.201302892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 34-One pot synthesis of zwitteronic 99mTc doped ultrasmall iron oxide.pdf. (n.d.)

  42. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Brennan SE (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg 88:105906

    Article  PubMed  Google Scholar 

  43. Lee P-W, Hsu S-H, Wang J-J, Tsai J-S, Lin K-J, Wey S-P, Sung H-W (2010) The characteristics, biodistribution, magnetic resonance imaging and biodegradability of superparamagnetic core–shell nanoparticles. Biomaterials 31(6):1316–1324

    Article  CAS  PubMed  Google Scholar 

  44. Madru R, Kjellman P, Olsson F, Wingårdh K, Ingvar C, Ståhlberg F, Strand S-E (2012) 99mTc-labeled superparamagnetic iron oxide nanoparticles for multimodality SPECT/MRI of sentinel lymph nodes. J Nuclear Med : Off Publ Soc Nucl Med 53(3):459–463. https://doi.org/10.2967/jnumed.111.092437

    Article  CAS  Google Scholar 

  45. Wang P, Sun W, Guo J, Zhang K, Liu Y, Jiang Q, Sun X (2021) One pot synthesis of zwitteronic 99mTc doped ultrasmall iron oxide nanoparticles for SPECT/T1-weighted MR dual-modality tumor imaging. Colloids Surf B, Biointerfaces 197:111403

    Article  CAS  PubMed  Google Scholar 

  46. Wang JT, Cabana L, Bourgognon M, Kafa H, Protti A, Venner K, Roig A (2014) Magnetically decorated multiwalled carbon nanotubes as dual MRI and SPECT contrast agents. Adv Funct Mater 24(13):1880–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cheng D, Li X, Zhang C, Tan H, Wang C, Pang L, Shi H (2015) Detection of vulnerable atherosclerosis plaques with a dual-modal single-photon-emission computed tomography/magnetic resonance imaging probe targeting apoptotic macrophages. ACS Appl Mater Interfaces 7(4):2847–2855. https://doi.org/10.1021/am508118x

    Article  CAS  PubMed  Google Scholar 

  48. Xue S, Zhang C, Yang Y, Zhang L, Cheng D, Zhang J, Zhang Y (2015) 99mTc-labeled iron oxide nanoparticles for dual-contrast (T1/T2) magnetic resonance and dual-modality imaging of tumor angiogenesis. J Biomed Nanotechnol 11(6):1027–1037. https://doi.org/10.1166/jbn.2015.2023

    Article  CAS  PubMed  Google Scholar 

  49. Mirković M, Radović M, Stanković D, Milanović Z, Janković D, Matović M, Vranješ-Đurić S (2019) 99mTc–bisphosphonate–coated magnetic nanoparticles as potential theranostic nanoagent. Mater Sci Eng C 102:124–133. https://doi.org/10.1016/j.msec.2019.04.034

    Article  CAS  Google Scholar 

  50. Xi W, Zhang G, Xue J, Li J, Liu Y, Wang J, Yang W (2023) A novel superparamagnetic iron oxide nanoparticles-based SPECT/MRI dual-modality probe for tumor imaging. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-022-08741-z

    Article  Google Scholar 

  51. Wang ZL (2001) Characterization of nanophase materials. Particle Particle Syst Charact: Meas Descr Particle Prop Behav Powders Dispers Syst 18(3):142–165

    Article  Google Scholar 

  52. Bogunia-Kubik K, Sugisaka M (2002) From molecular biology to nanotechnology and nanomedicine. Biosystems 65(2–3):123–138

    Article  CAS  PubMed  Google Scholar 

  53. Cho W-S, Duffin R, Thielbeer F, Bradley M, Megson IL, MacNee W, Donaldson K (2012) Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol Sci 126(2):469–477

    Article  CAS  PubMed  Google Scholar 

  54. Vetter A, Reinisch A, Strunk D, Kremser C, Hahn HW, Huck CW, Bernkop-Schnürch A (2011) Thiolated polyacrylic acid-modified iron oxide nanoparticles for in vitro labeling and MRI of stem cells. J Drug Target 19(7):562–572

    Article  CAS  PubMed  Google Scholar 

  55. Allen MJ, MacRenaris KW, Venkatasubramanian PN, Meade TJ (2004) Cellular delivery of MRI contrast agents. Chem Biol 11(3):301–307

    Article  CAS  PubMed  Google Scholar 

  56. Petersson J, Sánchez-Crespo A, Larsson SA, Mure M (2007) Physiological imaging of the lung: single-photon-emission computed tomography (SPECT). J Appl Physiol 102(1):468–476

    Article  PubMed  Google Scholar 

  57. Christian JA, Partridge M, Nioutsikou E, Cook G, McNair HA, Cronin B, Brada M (2005) The incorporation of SPECT functional lung imaging into inverse radiotherapy planning for non-small cell lung cancer. Radiother Oncol 77(3):271–277

    Article  PubMed  Google Scholar 

  58. Hashimoto H, Soma T, Mizumura S, Kokubo T, Nakanishi R, Ikeda T (2022) Evaluation of lung perfusion by using lung perfusion SPECT and lung CT with breathing synchronization software. Eur J Hybrid Imaging 6(1):1–10

    Article  Google Scholar 

  59. Donaldson K, Murphy FA, Duffin R, Poland CA (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  60. Khalil MM, Tremoleda JL, Bayomy TB, Gsell W (2011) Molecular SPECT imaging: an overview. Int J Mol Imaging 2011:796025

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bybel B, Brunken RC, DiFilippo FP, Neumann DR, Wu G, Cerqueira MD (2008) SPECT/CT imaging: clinical utility of an emerging technology. Radiographics 28(4):1097–1113

    Article  PubMed  Google Scholar 

  62. Buck AK, Nekolla S, Ziegler S, Beer A, Krause BJ, Herrmann K, Schwaiger M (2008) Spect/ct. J Nucl Med 49(8):1305–1319

    Article  PubMed  Google Scholar 

  63. Morales-Avila E, Ferro-Flores G, Ocampo-García BE, De León-Rodríguez LM, Santos-Cuevas CL, García-Becerra R, Gómez-Oliván L (2011) Multimeric system of 99mTc-labeled gold nanoparticles conjugated to c [RGDfK (C)] for molecular imaging of tumor α (v) β (3) expression. Bioconjug Chem 22(5):913–922

    Article  CAS  PubMed  Google Scholar 

  64. Szasz A, Vincze G (2006) Dose concept of oncological hyperthermia: heat-equation considering the cell destruction. J Cancer Res Ther 2(4):171–181

    Article  CAS  PubMed  Google Scholar 

  65. Atkins HL, Hauser W, Nelson KG, Richards P (1969) Technetium 99M-DTPA-A new radiopharmaceutical for brain and kidney scanning. Am J Clin Pathol 52:90

    Google Scholar 

  66. Bentley BS, Tulchinsky M (2014) SPECT/CT helps in localization and guiding management of small bowel gastrointestinal hemorrhage. Clin Nucl Med 39(1):94–96

    Article  PubMed  Google Scholar 

  67. Otomi Y, Otsuka H, Terazawa K, Yamanaka M, Obama Y, Arase M, Uyama N (2018) The diagnostic ability of SPECT/CT fusion imaging for gastrointestinal bleeding: a retrospective study. BMC Gastroenterol 18:1–7

    Article  Google Scholar 

  68. Bennink RJ, Hamann J, de Bruin K, ten Kate FJW, van Deventer SJH, te Velde AA (2005) Dedicated pinhole SPECT of intestinal neutrophil recruitment in a mouse model of dextran sulfate sodium–induced colitis. J Nucl Med 46(3):526–531

    CAS  PubMed  Google Scholar 

  69. Kemerink GJ, Liu X, Kieffer D, Ceyssens S, Mortelmans L, Verbruggen AM, Verbeke K (2003) Safety, biodistribution, and dosimetry of 99mTc-HYNIC-annexin V, a novel human recombinant annexin V for human application. J Nucl Med 44(6):947–952

    CAS  PubMed  Google Scholar 

  70. Sakellariou K, Charalampidou S, Fotopoulos A, Sioka C (2022) Hybrid bone SPECT/CT reveals spleen calcification in sickle cell mutation and beta-thalassemia. Nucl Med Rev 25(1):70–71

    Article  Google Scholar 

  71. Hatta T, Nishimura S, Nishimura T (2009) Prognostic risk stratification of myocardial ischaemia evaluated by gated myocardial perfusion SPECT in patients with chronic kidney disease. Eur J Nucl Med Mol Imaging 36:1835–1841

    Article  PubMed  Google Scholar 

  72. Park J, Bae S, Seo S, Park S, Bang J-I, Han JH, Lee JS (2019) Measurement of glomerular filtration rate using quantitative SPECT/CT and deep-learning-based kidney segmentation. Sci Rep 9(1):4223

    Article  PubMed  PubMed Central  Google Scholar 

  73. Miyazaki C, Harada H, Shuke N, Okizaki A, Miura M, Hirano T (2010) 99m Tc-DTPA dynamic SPECT and CT volumetry for measuring split renal function in live kidney donors. Ann Nucl Med 24:189–195

    Article  PubMed  Google Scholar 

  74. Khoshyari-morad Z, Jahangir R, Miri-Hakimabad H, Mohammadi N, Arabi H (2021) Monte Carlo-based estimation of patient absorbed dose in 99mTc-DMSA,-MAG3, and-DTPA SPECT imaging using the University of Florida (UF) phantoms. arXiv preprint arXiv:2103.00619

  75. Wan-Li Z, Jun T, Yu-Dong Z, Fei S, Zhijian H, Chen-Jiang W, Zhengkai H (2019) Prospective comparison between DCE-MRR and 99mTc-DTPA-based SPECT for determination of allograft renal function. J Magn Reson Imaging 49(1):262–269

    Article  PubMed  Google Scholar 

  76. Kang Y, Park S, Suh MS, Byun S-S, Chae D-W, Lee WW (2017) Quantitative single-photon emission computed tomography/computed tomography for glomerular filtration rate measurement. Nucl Med Mol Imaging 51:338–346

    Article  PubMed  PubMed Central  Google Scholar 

  77. Klein R, Hung G-U, Wu T-C, Huang W-S, Li D, deKemp RA, Hsu B (2014) Feasibility and operator variability of myocardial blood flow and reserve measurements with 99m Tc-sestamibi quantitative dynamic SPECT/CT imaging. J Nucl Cardiol 21:1075–1088

    Article  PubMed  Google Scholar 

  78. Shrestha U, Sciammarella M, Alhassen F, Yeghiazarians Y, Ellin J, Verdin E, Gullberg GT (2017) Measurement of absolute myocardial blood flow in humans using dynamic cardiac SPECT and 99m Tc-tetrofosmin: method and validation. J Nucl Cardiol 24:268–277

    Article  PubMed  Google Scholar 

  79. Giubbini R, Bertoli M, Durmo R, Bonacina M, Peli A, Faggiano I, Paghera B (2021) Comparison between N 13 NH 3-PET and 99m Tc-Tetrofosmin-CZT SPECT in the evaluation of absolute myocardial blood flow and flow reserve. J Nucl Cardiol 28:1906–1918

    Article  PubMed  Google Scholar 

  80. Birnbaum BA, Weinreb JC, Megibow AJ, Sanger JJ, Lubat E, Kanamuller H, Bosniak MA (1990) Definitive diagnosis of hepatic hemangiomas: MR imaging versus Tc-99m-labeled red blood cell SPECT. Radiology 176(1):95–101

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahsa Mansourian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garshad, J., Salarvand, A., Tavakoli, M. et al. Potential of [99mTc] Tc-IONPs in SPECT: a systematic review on efficiency and accumulation rates. J Radioanal Nucl Chem (2024). https://doi.org/10.1007/s10967-024-09480-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10967-024-09480-z

Keywords

Navigation